1
|
Zhou M, Lu Y, Han L, Lu M, Guan C, Yu J, Liu H, Chen D, Li H, Yang Y, Zhang L, Tian L, Liu Q, Hou Z. Exploration of Parascaris species in three different Equus populations in China. Parasit Vectors 2023; 16:202. [PMID: 37322493 DOI: 10.1186/s13071-023-05768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The roundworms, Parascaris spp., are important nematode parasites of foals and were historically model organisms in the field of cell biology, leading to many important discoveries. According to karyotype, ascarids in Equus are commonly divided into Parascaris univalens (2n = 2) and Parascaris equorum (2n = 4). METHODS Here, we performed morphological identification, karyotyping and sequencing of roundworms from three different hosts (horses, zebras and donkeys). Phylogenetic analysis was performed to study the divergence of these ascarids based on cytochrome c oxidase subunit I (COI) and internal transcribed spacer (ITS) sequences. RESULTS Karyotyping, performed on eggs recovered from worms of three different Equus hosts in China, showed two different karyotypes (2n = 2 in P. univalens collected from horses and zebras; 2n = 6 in Parascaris sp. collected from donkeys). There are some differences in the terminal part of the spicula between P. univalens (concave) and Parascaris sp. (rounded). Additionally, it was found that the egg's chitinous layer was significantly thicker in Parascaris sp. (> 5 μm) than P. univalens (< 5 μm) (F(2537) = 1967, P < 0.01). Phylogenetic trees showed that the sequences of Parascaris from Equus hosts were divided into two distinct lineages based on sequences of the COI and ITS. CONCLUSIONS Comparing the differences in roundworms collected from three different Equus hosts, this study describes a Parascaris species (Parascaris sp.) with six chromosomes in donkeys. It is worth noting that the thickness of the chitinous layer in the Parascaris egg may serve as a diagnostic indicator to distinguish the two roundworms (P. univalens and Parascaris sp.). The Parascaris sp. with six chromosomes in donkeys in the present study may be a species of P. trivalens described in 1934, but the possibility that it is a new Parascaris species cannot be ruled out. Both karyotyping and molecular analysis are necessary to solve the taxonomic problems in Parascaris species.
Collapse
Affiliation(s)
- Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Maolin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | | | - Jie Yu
- Dong-E-E-Jiao Co. Ltd, Shandong, China
| | - Hetong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Denghui Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Hongjia Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yuling Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lihong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
- Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
2
|
Molecular diagnostics for gastrointestinal helminths in equids: Past, present and future. Vet Parasitol 2023; 313:109851. [PMID: 36521296 DOI: 10.1016/j.vetpar.2022.109851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This review is aimed to (i) appraise the literature on the use of molecular techniques for the detection, quantification and differentiation of gastrointestinal helminths (GIH) of equids, (ii) identify the knowledge gaps and, (iii) discuss diagnostic prospects in equine parasitology. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews, we retrieved 54 studies (horses: 50/54; donkeys and zebras: 4/54) from four databases. Polymerase chain reaction (PCR) was employed in all of the studies whereas PCR amplicons were sequenced in only 18 of them. Other techniques used (including modifications of PCR) were reverse line blot, quantitative (q)PCR, restriction fragment length polymorphism, nested-PCR, PCR-directed next-generation sequencing, Southern blotting, single strand conformation polymorphism, PCR-enzyme linked immunosorbent assay, matrix-assisted laser desorption/ionisation-time of flight and random amplification of polymorphic DNA. Most of the studies (53/54) used nuclear ribosomal RNA (including the internal transcribed spacers, intergenic spacer, 5.8 S, 18 S, 28 S and 12 S) as target loci while cytochrome c oxidase subunit 1 and random genomic regions were targeted in only three and one studies, respectively. Overall, to date, the majority of molecular studies have focused on the diagnosis and identification of GIHs of equids (i.e. species of Anoplocephala, Craterostomum, cyathostomins, Oesophagodontus, Parascaris, Strongylus, Strongyloides and Triodontophorus), with a recent shift towards investigations on anthelmintic resistance and the use of high-throughput nemabiome metabarcoding. With the increasing reports of anthelmintic resistance in equid GIHs, it is crucial to develop and apply techniques such as advanced metabarcoding for surveillance of parasite populations in order to gain detailed insights into their diversity and sustainable control. To the best of our knowledge, this is the first systematic review that evaluates molecular investigations published on the diagnosis and quantification of equid GIHs and provides useful insights into important knowledge gaps and future research directions in equid molecular parasitology.
Collapse
|
3
|
The equine ascarids: resuscitating historic model organisms for modern purposes. Parasitol Res 2022; 121:2775-2791. [PMID: 35986167 PMCID: PMC9391215 DOI: 10.1007/s00436-022-07627-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.
Collapse
|
4
|
Absence of Polymorphisms in Codons 167, 198 and 200 of All Seven β-tubulin Isotypes of Benzimidazole Susceptible and Resistant Parascaris spp. Specimens from Australia. Pathogens 2022; 11:pathogens11050490. [PMID: 35631011 PMCID: PMC9143322 DOI: 10.3390/pathogens11050490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Benzimidazoles resistance is widespread in strongyle parasitic nematodes and associated with polym orphisms in the codons 167, 198 and 200 of isotype 1 β-tubulin (tbb-1). In ascarids, benzimidazole (BZ) resistance has rarely been reported and in none of these cases were any of these polymorphisms detected. Here, available genome and transcriptome data from WormBase ParaSite were used to compare the complete β-tubulin reservoirs of Parascaris univalens, Ascaris suum and Ascaris lumbricoides. Adult Parascaris spp. specimens collected in Australia from horses after BZ treatment (susceptible, n = 13) or surviving BZ treatment and collected after ivermectin treatment (resistant, n = 10) were genotyped regarding codons 167, 198 and 200 using Sanger sequencing. Phylogenetic analyses clearly showed that there are no one-to-one ascarid orthologs of strongyle tbb-1 genes. In the reference genomes, as well as phenotypically susceptible and resistant Parascaris spp. from Australia, six out of seven β-tubulin genes showed a BZ-susceptible genotype (F167, E198, F200). The only exception were the testis-specific β-tubulin D genes from all three ascarid species that encode tyrosine at codon 200. This was observed independently of the BZ-susceptibility phenotype of Parascaris spp. These data suggest that different mechanisms lead to BZ resistance in ascarid and strongyle nematodes.
Collapse
|