1
|
He G, Zheng Q, Wu J, Wu L, Geng Z, Jiang G, Huang H, Jiang X, Yu X. Discordant results between Xpert MTB/RIF assay and Bactec MGIT 960 culture system regarding the detection of rifampin-resistant Mycobacterium tuberculosis isolates in Wenzhou, China. Microbiol Spectr 2024; 12:e0385923. [PMID: 38738892 PMCID: PMC11237732 DOI: 10.1128/spectrum.03859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
This study aimed to assess the possible causes of discordant results between Xpert MTB/RIF (Xpert) and Bactec MGIT 960 Culture System (MGIT960) regarding rifampicin (RIF) susceptibility in Mycobacterium tuberculosis. Patients with previous RIF-resistant tuberculosis who were admitted to Wenzhou Central Hospital from January 2020 to December 2022 were enrolled. The isolates obtained from these patients were subjected to RIF susceptibility tests using Xpert and MGIT960, and the minimum inhibitory concentration (MIC) of RIF was determined by the MYCOTB MIC plate test. Additionally, molecular docking and molecular dynamics (MD) simulations were performed to evaluate the binding efficacy of rpoB and RIF based on rpoB mutations detected in the isolates with discordant RIF susceptibility results. A total of 28 isolates with discordant RIF susceptibility test results were detected, 15 of them were RIF susceptible with MICs ≤ 0.5 µg/mL. Twelve out of 15 isolates contained borderline RIF resistance-associated mutations [L430P (n = 6), H445N (n = 6)], 1 isolate had D435Y and Q429H double mutation, and the remaining 2 isolates had a silent (Q432Q) mutation. Compared with the affinity of RIF toward the wild type (WT) (-45.83 kcal/mol) by MD, its affinity toward L452P (-55.52 kcal/mol), D435Y (-47.39 kcal/mol), L430P (approximately -69.72 kcal/mol), H445N (-49.53 kcal/mol), and Q429H (-55.67 kcal/mol) increased. Borderline RIF resistance-associated mutations were the main cause for the discordant RIF susceptibility results between Xpert and MGIT960, and the mechanisms of the resistance need further investigated.IMPORTANCEThis study is aimed at assessing discordant results between Xpert MTB/RIF (Xpert) assay and Bactec MGIT 960 Culture System (MGIT960) regarding the detection of rifampicin (RIF)-resistant Mycobacterium tuberculosis isolates in Wenzhou, China. The discordant results of RIF between these two assays were mainly caused by borderline RIF resistance-associated mutations, subsequently by silent mutations of rpoB. Borderline RIF resistance- associated mutations detected in our study were demonstrated to not be affected by the affinity of rpoB and RIF by molecular dynamics, and the mechanism of resistance was needed to be clarified. For the discordant results of RIF by Xpert and MGIT960 that occurred, rpoB DNA sequencing was recommended to investigate its association with resistance to RIF.
Collapse
Affiliation(s)
- Guiqing He
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Qingyong Zheng
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Jing Wu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lianpeng Wu
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiangao Jiang
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Rupasinghe P, Ashraf A, Barreda N, Parveen S, Zubair M, Calderon R, Asif S, Hirani N, Chingisova L, Bulane A, Hang PT, Ha DT, Ardizzoni E, Kursheed N, De Rijk WB, Rigouts L, Guglielmetti L, Mitnick C, de Jong BC. Reduced critical concentration might not have improved MGIT-based DST's sensitivity to rifampicin. Antimicrob Agents Chemother 2024; 68:e0170123. [PMID: 38534101 PMCID: PMC11064607 DOI: 10.1128/aac.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Affiliation(s)
- Praharshinie Rupasinghe
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Azka Ashraf
- The Indus Hospital laboratory, Karachi, Pakistan
| | | | | | | | | | - Sunil Asif
- The Indus Hospital laboratory, Karachi, Pakistan
| | - Nilma Hirani
- Department of Microbiology, Sir JJ Hospital, Mumbai, India
| | | | - Atang Bulane
- Center for Tuberculosis, National Institute of Communicable Diseases, Mohakhali, South Africa
| | - Pham Thu Hang
- Regional Tuberculosis Reference Lab, Ho Chi Minh, Vietnam
| | - Doan Thu Ha
- National Tuberculosis Reference Lab, Hanoi, Vietnam
| | - Elisa Ardizzoni
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Leen Rigouts
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Lorenzo Guglielmetti
- Medical Department, MSF, Paris, France
- Sorbonne University, Centre d’Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France
- AP-HP, Bactériologie-Hygiène, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries, Paris, France
| | - Carol Mitnick
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Partners In Health, Boston, Massachusetts, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bouke C. de Jong
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
3
|
Xiong XS, Zhang XD, Yan JW, Huang TT, Liu ZZ, Li ZK, Wang L, Li F. Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques. Infect Drug Resist 2024; 17:1491-1506. [PMID: 38628245 PMCID: PMC11020249 DOI: 10.2147/idr.s457308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication.
Collapse
Affiliation(s)
- Xue-Song Xiong
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Xue-Di Zhang
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Jia-Wei Yan
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Ting-Ting Huang
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Zhan-Zhong Liu
- Department of Pharmacy, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Zheng-Kang Li
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Liang Wang
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Fen Li
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| |
Collapse
|
4
|
Rukmana A, Gozali C, Erlina L. Mycobacterium tuberculosis Lineage Distribution Using Whole-Genome Sequencing and Bedaquiline, Clofazimine, and Linezolid Phenotypic Profiles among Rifampicin-Resistant Isolates from West Java, Indonesia. Int J Microbiol 2024; 2024:2037961. [PMID: 38469390 PMCID: PMC10927343 DOI: 10.1155/2024/2037961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis infection. Indonesia is ranked second in the world for TB cases. New anti-TB drugs from groups A and B, such as bedaquiline, clofazimine, and linezolid, have been shown to be effective in curing drug resistance in TB patients, and Indonesia is already using these drugs to treat patients. However, studies comparing the TB strain types with anti-TB resistance profiles are still relevant to understanding the prevalent strains in the country and their phenotypic characteristics. This study aimed to determine the association between the TB lineage distribution using whole-genome sequencing and bedaquiline, clofazimine, and linezolid phenotypic profile resistance among M. tuberculosisrifampicin-resistant isolates from West Java. M. tuberculosis isolates stock of the Department of Microbiology, Faculty of Medicine, Universitas Indonesia, was tested against bedaquiline, clofazimine, and linezolid using a mycobacteria growth indicator tube liquid culture. All isolates were tested for M. tuberculosis and rifampicin resistance using Xpert MTB/RIF. The DNA genome of M. tuberculosis was freshly extracted from a Löwenstein-Jensen medium culture and then sequenced. The isolates showed phenotypically resistance to bedaquiline, clofazimine, and linezolid at 5%, 0%, and 0%, respectively. We identified gene mutations on phenotypically bedaquiline-resistant strains (2/3), and other mutations also found in phenotypically drug-sensitive strains. Mykrobe analysis showed that most (88.33%) of the isolates could be classified as rifampicin-resistant TB. Using Mykrobe and TB-Profiler to determine the lineage distribution, the isolates were found to belong to lineage 4 (Euro-American; 48.33%), lineage 2 (East Asian/Beijing; 46.67%), and lineage 1 (Indo-Oceanic; 5%). This work underlines the requirement to increase the representation of genotype-phenotype TB data while also highlighting the importance and efficacy of WGS in predicting medication resistance and inferring disease transmission.
Collapse
Affiliation(s)
- Andriansjah Rukmana
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta 10320, Indonesia
| | - Cynthia Gozali
- Master Programme of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Linda Erlina
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
5
|
Zaporojan N, Negrean RA, Hodișan R, Zaporojan C, Csep A, Zaha DC. Evolution of Laboratory Diagnosis of Tuberculosis. Clin Pract 2024; 14:388-416. [PMID: 38525709 PMCID: PMC10961697 DOI: 10.3390/clinpract14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease of global public health importance caused by the Mycobacterium tuberculosis complex. Despite advances in diagnosis and treatment, this disease has worsened with the emergence of multidrug-resistant strains of tuberculosis. We aim to present and review the history, progress, and future directions in the diagnosis of tuberculosis by evaluating the current methods of laboratory diagnosis of tuberculosis, with a special emphasis on microscopic examination and cultivation on solid and liquid media, as well as an approach to molecular assays. The microscopic method, although widely used, has its limitations, and the use and evaluation of other techniques are essential for a complete and accurate diagnosis. Bacterial cultures, both in solid and liquid media, are essential methods in the diagnosis of TB. Culture on a solid medium provides specificity and accuracy, while culture on a liquid medium brings rapidity and increased sensitivity. Molecular tests such as LPA and Xpert MTB/RIF have been found to offer significant benefits in the rapid and accurate diagnosis of TB, including drug-resistant forms. These tests allow the identification of resistance mutations and provide essential information for choosing the right treatment. We conclude that combined diagnostic methods, using several techniques and approaches, provide the best result in the laboratory diagnosis of TB. Improving the quality and accessibility of tests, as well as the implementation of advanced technologies, is essential to help improve the sensitivity, efficiency, and accuracy of TB diagnosis.
Collapse
Affiliation(s)
- Natalia Zaporojan
- Doctoral School of Biomedical Sciences, University of Oradea, Str. Universitatii 1, 410087 Oradea, Romania; (N.Z.)
| | - Rodica Anamaria Negrean
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| | - Ramona Hodișan
- Doctoral School of Biomedical Sciences, University of Oradea, Str. Universitatii 1, 410087 Oradea, Romania; (N.Z.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| | - Claudiu Zaporojan
- Emergency County Hospital Bihor, Str. Republicii 37, 410167 Oradea, Romania
| | - Andrei Csep
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biomedical Sciences, University of Oradea, Str. Universitatii 1, 410087 Oradea, Romania; (N.Z.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| |
Collapse
|
6
|
Dudnyk A, Hempel M, Lytvyniuk O, Liudkevych H, Matsera V, Nikitchenko T, Blyzniuk S, Molina-Moya B, Preyer R, Domínguez J. Impact of line probe assay-based molecular testing on individualized treatment in patients with rifampicin-resistant tuberculosis: data from the prospective INNOVA4TB cohort study in Ukraine. Ther Adv Respir Dis 2024; 18:17534666241249841. [PMID: 38817020 PMCID: PMC11143817 DOI: 10.1177/17534666241249841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Ukraine remains a high World Health Organization priority country for drug-resistant tuberculosis (TB). Rifampicin-resistant TB (RR-TB) has a more protracted, more complicated, and more expensive treatment. In 2021, Ukraine reported 4025 RR-TB cases - 5.4 times more (751) than all 30 European Union/ European Economic Area countries together. OBJECTIVES The objective of the study was to determine the diagnostic accuracy of line probe assay (LPA), AID Autoimmun Diagnostika GmbH, for detecting resistance to anti-TB drugs and its clinical application for selecting treatment regimens. DESIGN A prospective observational cohort study. METHODS From May 2019 to June 2020, we consecutively enrolled patients with active TB hospitalized at the Regional Phthisiopulmonology Center (Vinnytsia, Ukraine), aged between 18 and 82 years. The LPA was performed in the Genetic Research Laboratory at National Pirogov Memorial Medical University, Vinnytsia, Ukraine. RESULTS A total of 84 clinical specimens and 97 culture isolates from 126 TB patients were tested during the study. Accuracy (95% confidence interval) of LPA for clinical samples in comparison with phenotypic drug susceptibility test (DST) was 80.1 (68.5-89.0) for isoniazid (H), 74.7 (62.4-84.6) for rifampicin (R), 74.4 (62.5-84.1) for ethambutol, 71.4 (41.9-91.6) for streptomycin, 84.6 (62.4-96.5) for prothionamide/ethionamide, and 84.6 (73.6-92.3) for levofloxacin (Lfx), respectively. We found a significantly higher sensitivity of LPA for H, R, and Lfx for the culture isolates compared to clinical specimens (p < 0.05). LPA detected different mutations in 6 out of 17 (35.5%) patients susceptible to R by Xpert. A shorter treatment regimen with an injectable agent demonstrated a low suitability rate of 5% (8/156) in a cohort of RR-TB patients from Ukraine. CONCLUSION Initial LPA testing accurately identifies resistance to anti-TB drugs and facilitates the selection of an appropriate treatment regimen, minimizing exposure to empirical therapy.
Collapse
Affiliation(s)
- Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, 56 Pyrogova St., Vinnytsia 21018, Ukraine
- Institut d’Investigació Germans Trias i Pujol (IGTP), Mar Building, P1-18, Carretera de Can Ruti, Camí de les Escoles s/n, Badalona 08916, Barcelona, Spain
| | | | - Oksana Lytvyniuk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Halyna Liudkevych
- Genetic Research Laboratory, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Volodymyr Matsera
- Department of Drug-Resistant Tuberculosis, Regional Phthisiopulmonology Center, Bohonyky, Vinnytsia Region, Ukraine
| | - Tetiana Nikitchenko
- Department of Drug-Resistant Tuberculosis, Regional Phthisiopulmonology Center, Bohonyky, Vinnytsia Region, Ukraine
| | - Svitlana Blyzniuk
- Department of Drug-Susceptible Tuberculosis, Regional Phthisiopulmonology Center, Bohonyky, Vinnytsia Region, Ukraine
| | - Barbara Molina-Moya
- Institut d’Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | | | - José Domínguez
- Institut d’Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- CIBER Enfermedades Respiratorias, Badalona, Barcelona, Spain
| |
Collapse
|
7
|
Rao M, Wollenberg K, Harris M, Kulavalli S, Thomas L, Chawla K, Shenoy VP, Varma M, Saravu K, Hande HM, Shanthigrama Vasudeva CS, Jeffrey B, Gabrielian A, Rosenthal A. Lineage classification and antitubercular drug resistance surveillance of Mycobacterium tuberculosis by whole-genome sequencing in Southern India. Microbiol Spectr 2023; 11:e0453122. [PMID: 37671895 PMCID: PMC10580826 DOI: 10.1128/spectrum.04531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/03/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Studies mapping genetic heterogeneity of clinical isolates of M. tuberculosis for determining their strain lineage and drug resistance by whole-genome sequencing are limited in high tuberculosis burden settings. We carried out whole-genome sequencing of 242 M. tuberculosis isolates from drug-sensitive and drug-resistant tuberculosis patients, identified and collected as part of the TB Portals Program, to have a comprehensive insight into the genetic diversity of M. tuberculosis in Southern India. We report several genetic variations in M. tuberculosis that may confer resistance to antitubercular drugs. Further wide-scale efforts are required to fully characterize M. tuberculosis genetic diversity at a population level in high tuberculosis burden settings for providing precise tuberculosis treatment.
Collapse
Affiliation(s)
- Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kurt Wollenberg
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Harris
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vishnu Prasad Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - H. Manjunatha Hande
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Brendan Jeffrey
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrei Gabrielian
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Rosenthal
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Chaiyachat P, Kaewseekhao B, Chaiprasert A, Kamolwat P, Nonghanphithak D, Phetcharaburanin J, Sirichoat A, Ong RTH, Faksri K. Metabolomic analysis of Mycobacterium tuberculosis reveals metabolic profiles for identification of drug-resistant tuberculosis. Sci Rep 2023; 13:8655. [PMID: 37244948 DOI: 10.1038/s41598-023-35882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
The detection of pre-extensively (pre-XDR) and extensively drug-resistant tuberculosis (XDR-TB) is challenging. Drug-susceptibility tests for some anti-TB drugs, especially ethambutol (ETH) and ethionamide (ETO), are problematic due to overlapping thresholds to differentiate between susceptible and resistant phenotypes. We aimed to identify possible metabolomic markers to detect Mycobacterium tuberculosis (Mtb) strains causing pre-XDR and XDR-TB. The metabolic patterns of ETH- and ETO-resistant Mtb isolates were also investigated. Metabolomics of 150 Mtb isolates (54 pre-XDR, 63 XDR-TB and 33 pan-susceptible; pan-S) were investigated. Metabolomics of ETH and ETO phenotypically resistant subgroups were analyzed using UHPLC-ESI-QTOF-MS/MS. Orthogonal partial least-squares discriminant analysis revealed distinct separation in all pairwise comparisons among groups. Two metabolites (meso-hydroxyheme and itaconic anhydride) were able to differentiate the pre-XDR and XDR-TB groups from the pan-S group with 100% sensitivity and 100% specificity. In comparisons of the ETH and ETO phenotypically resistant subsets, sets of increased (ETH = 15, ETO = 7) and decreased (ETH = 1, ETO = 6) metabolites specific for the resistance phenotype of each drug were found. We demonstrated the potential for metabolomics of Mtb to differentiate among types of DR-TB as well as between isolates that were phenotypically resistant to ETO and ETH. Thus, metabolomics might be further applied for DR-TB diagnosis and patient management.
Collapse
Affiliation(s)
- Pratchakan Chaiyachat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Benjawan Kaewseekhao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phalin Kamolwat
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Ditthawat Nonghanphithak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
9
|
Xia H, Song Y, Zheng Y, Wang S, Zhao B, He W, Liu D, Ou X, Zhou Y, Zhao Y. Detection of Mycobacterium tuberculosis Rifampicin Resistance Conferred by Borderline rpoB Mutations: Xpert MTB/RIF is Superior to Phenotypic Drug Susceptibility Testing. Infect Drug Resist 2022; 15:1345-1352. [PMID: 35378895 PMCID: PMC8976515 DOI: 10.2147/idr.s358301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hui Xia
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuanyuan Song
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Zheng
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shengfen Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wencong He
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Dongxin Liu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Correspondence: Yanlin Zhao, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, People’s Republic of China, Tel +86 10-58900517, Email
| |
Collapse
|