1
|
Raven N, Klaassen M, Madsen T, Jones M, Hamilton DG, Ruiz-Aravena M, Thomas F, Hamede RK, Ujvari B. Complex associations between cancer progression and immune gene expression reveals early influence of transmissible cancer on Tasmanian devils. Front Immunol 2024; 15:1286352. [PMID: 38515744 PMCID: PMC10954821 DOI: 10.3389/fimmu.2024.1286352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024] Open
Abstract
The world's largest extant carnivorous marsupial, the Tasmanian devil, is challenged by Devil Facial Tumor Disease (DFTD), a fatal, clonally transmitted cancer. In two decades, DFTD has spread across 95% of the species distributional range. A previous study has shown that factors such as season, geographic location, and infection with DFTD can impact the expression of immune genes in Tasmanian devils. To date, no study has investigated within-individual immune gene expression changes prior to and throughout the course of DFTD infection. To explore possible changes in immune response, we investigated four locations across Tasmania that differed in DFTD exposure history, ranging between 2 and >30 years. Our study demonstrated considerable complexity in the immune responses to DFTD. The same factors (sex, age, season, location and DFTD infection) affected immune gene expression both across and within devils, although seasonal and location specific variations were diminished in DFTD affected devils. We also found that expression of both adaptive and innate immune genes starts to alter early in DFTD infection and continues to change as DFTD progresses. A novel finding was that the lower expression of immune genes MHC-II, NKG2D and CD8 may predict susceptibility to earlier DFTD infection. A case study of a single devil with regressed tumor showed opposite/contrasting immune gene expression patterns compared to the general trends observed across devils with DFTD infection. Our study highlights the complexity of DFTD's interactions with the host immune system and the need for long-term studies to fully understand how DFTD alters the evolutionary trajectory of devil immunity.
Collapse
Affiliation(s)
- Nynke Raven
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Geelong, VIC, Australia
| | - Marcel Klaassen
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Geelong, VIC, Australia
| | - Thomas Madsen
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Geelong, VIC, Australia
| | - Menna Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Manuel Ruiz-Aravena
- Mississippi State University, Forest & Wildlife Research Center (FWRC)-Wildlife, Fisheries & Aquaculture, Starkville, MS, United States
| | - Frederic Thomas
- CREEC/CANECEV, CREES-MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Rodrigo K. Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Geelong, VIC, Australia
| |
Collapse
|
2
|
Gérard A, Owen RS, Dujon AM, Roche B, Hamede R, Thomas F, Ujvari B, Siddle HV. In vitro competition between two transmissible cancers and potential implications for their host, the Tasmanian devil. Evol Appl 2024; 17:e13670. [PMID: 38468711 PMCID: PMC10925828 DOI: 10.1111/eva.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Since the emergence of a transmissible cancer, devil facial tumour disease (DFT1), in the 1980s, wild Tasmanian devil populations have been in decline. In 2016, a second, independently evolved transmissible cancer (DFT2) was discovered raising concerns for survival of the host species. Here, we applied experimental and modelling frameworks to examine competition dynamics between the two transmissible cancers in vitro. Using representative cell lines for DFT1 and DFT2, we have found that in monoculture, DFT2 grows twice as fast as DFT1 but reaches lower maximum cell densities. Using co-cultures, we demonstrate that DFT2 outcompetes DFT1: the number of DFT1 cells decreasing over time, never reaching exponential growth. This phenomenon could not be replicated when cells were grown separated by a semi-permeable membrane, consistent with exertion of mechanical stress on DFT1 cells by DFT2. A logistic model and a Lotka-Volterra competition model were used to interrogate monoculture and co-culture growth curves, respectively, suggesting DFT2 is a better competitor than DFT1, but also showing that competition outcomes might depend on the initial number of cells, at least in the laboratory. We provide theories how the in vitro results could be translated to observations in the wild and propose that these results may indicate that although DFT2 is currently in a smaller geographic area than DFT1, it could have the potential to outcompete DFT1. Furthermore, we provide a framework for improving the parameterization of epidemiological models applied to these cancer lineages, which will inform future disease management.
Collapse
Affiliation(s)
- Anne‐Lise Gérard
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/MIVEGEC, CNRS, IRDUniversité de MontpellierMontpellierFrance
| | - Rachel S. Owen
- School of Biological SciencesUniversity of SouthamptonSouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
- The Roslin InstituteThe University of EdinburghEdinburghUK
| | - Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Benjamin Roche
- CREEC/MIVEGEC, CNRS, IRDUniversité de MontpellierMontpellierFrance
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Frédéric Thomas
- CREEC/MIVEGEC, CNRS, IRDUniversité de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Hannah V. Siddle
- School of Biological SciencesUniversity of SouthamptonSouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
3
|
Beer MA, Proft KM, Veillet A, Kozakiewicz CP, Hamilton DG, Hamede R, McCallum H, Hohenlohe PA, Burridge CP, Margres MJ, Jones ME, Storfer A. Disease-driven top predator decline affects mesopredator population genomic structure. Nat Ecol Evol 2024; 8:293-303. [PMID: 38191839 DOI: 10.1038/s41559-023-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024]
Abstract
Top predator declines are pervasive and often have dramatic effects on ecological communities via changes in food web dynamics, but their evolutionary consequences are virtually unknown. Tasmania's top terrestrial predator, the Tasmanian devil, is declining due to a lethal transmissible cancer. Spotted-tailed quolls benefit via mesopredator release, and they alter their behaviour and resource use concomitant with devil declines and increased disease duration. Here, using a landscape community genomics framework to identify environmental drivers of population genomic structure and signatures of selection, we show that these biotic factors are consistently among the top variables explaining genomic structure of the quoll. Landscape resistance negatively correlates with devil density, suggesting that devil declines will increase quoll genetic subdivision over time, despite no change in quoll densities detected by camera trap studies. Devil density also contributes to signatures of selection in the quoll genome, including genes associated with muscle development and locomotion. Our results provide some of the first evidence of the evolutionary impacts of competition between a top predator and a mesopredator species in the context of a trophic cascade. As top predator declines are increasing globally, our framework can serve as a model for future studies of evolutionary impacts of altered ecological interactions.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Kirstin M Proft
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Anne Veillet
- Hilo Core Genomics Facility, University of Hawaii at Hilo, Hilo, HI, USA
| | - Christopher P Kozakiewicz
- Department of Integrative Biology, Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - David G Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
4
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|