1
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Wei J, Zhang X, Chang Q, Mugo SM, Zhang Q. An Integrated Sweat Sensor for Synchronous Detection of Multiple Atherosclerosis Biomarkers. Anal Chem 2023; 95:15786-15794. [PMID: 37815480 DOI: 10.1021/acs.analchem.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Atherosclerosis conditions are often assessed in the clinic by measuring blood viscosity, blood flow, and blood lesion levels. In alignment with precision medicine, it is essential to develop convenient and noninvasive approaches for atherosclerosis diagnostics. Herein, an integrated electrochemical sensor was successfully demonstrated for simultaneously detecting cholesterol, transferrin, and K+ in sweat, all biomarker indicators of atherosclerosis. The sensing substrate was based on carbon quantum dots integrated within multiwalled carbon nanotubes, creating a hybrid framework with low electron transfer resistance and highly efficient electron transfer rate, yielding a highly electrochemical active platform for ultrasensitive detection of trace sweat biomarkers. To ensure specificity to corresponding targets, the sensing mechanisms were based on molecular recognition reactions of cholesterol and β-cyclodextrin, transferrin and molecular cavities, and K+ and ion-selective permeation membrane. Moreover, the integrated nonenzymatic sensor exhibited excellent long-term stability. Furthermore, the practical utility of the sensor was successfully demonstrated by the simultaneous detection of three atherosclerosis biomarkers in sweat from volunteers who underwent predesigned daily activities. The sensor shows promise for convenient indexing of atherosclerosis conditions in a noninvasive way.
Collapse
Affiliation(s)
- Jingwei Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xieli Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qi Chang
- The 989 Hospital of the People's Liberation Army Joint Service Support Force, Luoyang 471031, P. R. China
| | - Samuel M Mugo
- Physical Science Department, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Dai D, Cheng Z, Feng S, Zhu Z, Yu J, Zhang W, Lu H, Zhang R, Zhu J. Quantitative Data-Independent Acquisition Mass Spectrometry Proteomics and Weighted Correlation Network Analysis of Plasma Samples for the Discovery of Chronic Kidney Disease-Specific Atherosclerosis Risk Factors. DNA Cell Biol 2022; 41:966-980. [PMID: 36255451 DOI: 10.1089/dna.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) accelerates atherosclerosis. The mechanism of CKD-related atherosclerosis is complex, and CKD-specific risk factors may contribute to this process in addition to traditional risk factors such as hypertension, diabetes, and hypercholesterolemia. In the present study, to discover CKD-specific atherosclerosis risk factors, a total of 62 patients with different stages of kidney function were enrolled. All patients underwent coronary angiographies and the severity of coronary atherosclerosis was defined by the SYNTAX score. Patients were divided into different groups according to their kidney function levels and coronary atherosclerosis severity. Data-independent acquisition mass spectrometry was used to identify differentially expressed proteins (DEPs) in the plasma samples, and weighted correlation network analysis (WGCNA) was employed to identify significant protein modules and hub proteins related to CKD-specific atherosclerosis. The results showed that 10 DEPs associated with atherosclerosis were found in the comparative groups with modest and severe CKD. Through WGCNA, 1768 proteins were identified and 8 protein modules were established. Enrichment analyses of protein modules revealed functional clusters mainly associated with inflammation and the complement and coagulation cascade as atherosclerosis developed under CKD conditions. The results may help to better understand the mechanisms of CKD-related atherosclerosis and guide future research on developing treatments for CKD-related atherosclerosis.
Collapse
Affiliation(s)
- Daopeng Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Cheng
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics and Data Science, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Feng
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Yu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics and Data Science, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
5
|
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 2018; 63:68-78. [PMID: 28822266 DOI: 10.1016/j.advms.2017.05.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 02/08/2023]
Abstract
The exposure of cells, tissues and extracellular matrix to harmful reactive species causes a cascade of reactions and induces activation of multiple internal defence mechanisms (enzymatic or non-enzymatic) that provide removal of reactive species and their derivatives. The non-enzymatic antioxidants are represented by molecules characterized by the ability to rapidly inactivate radicals and oxidants. This paper focuses on the major intrinsic non-enzymatic antioxidants, including metal binding proteins (MBPs), glutathione (GSH), uric acid (UA), melatonin (MEL), bilirubin (BIL) and polyamines (PAs).
Collapse
|
6
|
Evaluation of toxicological biomarkers in secreted proteins of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and their expressions in the plasma of rats and incineration workers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:584-93. [DOI: 10.1016/j.bbapap.2016.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 11/21/2022]
|
7
|
Aldeek F, Hawkins D, Palomo V, Safi M, Palui G, Dawson PE, Alabugin I, Mattoussi H. UV and Sunlight Driven Photoligation of Quantum Dots: Understanding the Photochemical Transformation of the Ligands. J Am Chem Soc 2015; 137:2704-14. [DOI: 10.1021/ja512802x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fadi Aldeek
- Department
of Chemistry and Biochemistry, Florida State University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Dana Hawkins
- Department
of Chemistry and Biochemistry, Florida State University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Valle Palomo
- Department
of Chemistry and Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Malak Safi
- Department
of Chemistry and Biochemistry, Florida State University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department
of Chemistry and Biochemistry, Florida State University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Philip E. Dawson
- Department
of Chemistry and Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Igor Alabugin
- Department
of Chemistry and Biochemistry, Florida State University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department
of Chemistry and Biochemistry, Florida State University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
8
|
Jiang S, Sun X, Gu H, Chen Y, Xi C, Qiao X, Chen X. Age-related change in kidney function, its influencing factors, and association with asymptomatic carotid atherosclerosis in healthy individuals--a 5-year follow-up study. Maturitas 2012; 73:230-8. [PMID: 22951150 DOI: 10.1016/j.maturitas.2012.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/30/2012] [Accepted: 07/25/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To better define the longitudinal changes in renal function, to examine the associated risk factors, and to investigate whether there is an independent association of decline in renal function with presence of carotid plaque in a middle-aged and elderly healthy population. METHODS 245 healthy individuals (98 males, 147 females) evaluated at baseline and 5 years later. RESULTS Over five years, estimated glomerular filtration rate (eGFR) decreased from 98.1±15.6 to 90.4±17.3mL/min/1.73m(2). There are three kinds of change in eGFR (elevated, stable and decreased) during follow-up, accounting for 14%, 29% and 57%, respectively. Multivariate analysis of cross-sectional data showed that gender, age, and serum uric acid (UA) were major factors which consistently affected eGFR at both baseline and follow-up, and that higher systolic blood pressure (SBP) and presence of plaque were involved in lower eGFR at the follow-up point. In longitudinal analysis, five baseline factors - age, SBP, low-density lipoprotein cholesterol (LDL-C), serum transferrin (TRF) and eGFR - independently predicted a greater variability in renal function. In addition, presence of plaque was an independent risk factor for a faster decline of eGFR. CONCLUSIONS Cross-sectional analysis demonstrates that renal function declines with increasing age. However, 43% of participants did not experience a decline in eGFR during follow-up. Besides older age and higher initial eGFR, presence of atherosclerotic carotid plaque, higher SBP, higher LDL-C and lower TRF are independent risk factors to predict a rapid decline of renal function in the healthy Chinese population.
Collapse
Affiliation(s)
- Shimin Jiang
- Department of Nephrology, Chinese PLA General Hospital, State Key Laboratory of Kidney Disease, 28 Fuxing Road, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Shannahan J, Schladweiler M, Padilla-Carlin D, Nyska A, Richards J, Ghio A, Gavett S, Kodavanti U. The role of cardiovascular disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation. Inhal Toxicol 2011; 23:129-41. [DOI: 10.3109/08958378.2011.551850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Bajić A, Zakrzewska J, Godjevac D, Andjus P, Jones DR, Spasić M, Spasojević I. Relevance of the ability of fructose 1,6-bis(phosphate) to sequester ferrous but not ferric ions. Carbohydr Res 2010; 346:416-20. [PMID: 21232735 DOI: 10.1016/j.carres.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/27/2022]
Abstract
The cytoprotective activity of F16BP has been documented in severe conditions such as convulsions, reperfusion injury, septic shock, diabetic complications, hypothermia-induced injury, UV-provoked skin damage and in other processes including apoptosis and excitotoxicity. F16BP shows very efficient cytoprotective activity in astroglial cells exposed to H(2)O(2)-provoked oxidative stress and during neuronal injury caused by hypoxic conditions. As most of the aforementioned processes involve iron activity-related conditions, we investigated the ferric and ferrous iron binding properties of F16BP under physiological conditions using (31)P NMR and EPR spectroscopy. Our results indicate that cytoprotective F16BP activity is predominantly based on ferrous iron sequestration. (31)P NMR spectroscopy of F16BP employing paramagnetic properties of iron clearly showed that F16BP forms stabile complexes with Fe(2+) which was verified by EPR of another divalent cation-Mn(2+). On the other hand, F16BP does not sequester ferric iron nor does it increase its redox activity as shown by (31)P NMR and EPR spin-trapping. Therefore, F16BP may be beneficial in neurodegenerative and other conditions that are characterised by ferric iron stores and deposits.
Collapse
Affiliation(s)
- Aleksandar Bajić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
11
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
12
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|