1
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
2
|
Metabolic abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: a mini-review. Biochem Soc Trans 2018; 46:547-553. [PMID: 29666214 DOI: 10.1042/bst20170503] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Chronic fatigue syndrome (CFS), commonly known as myalgic encephalomyelitis (ME), is a debilitating disease of unknown etiology. CFS/ME is a heterogeneous disease associated with a myriad of symptoms but with severe, prolonged fatigue as the core symptom associated with the disease. There are currently no known biomarkers for the disease, largely due to the lack of knowledge surrounding the eitopathogenesis of CFS/ME. Numerous studies have been conducted in an attempt to identify potential biomarkers for the disease. This mini-review offers a brief summary of current research into the identification of metabolic abnormalities in CFS/ME which may represent potential biomarkers for the disease. The progress of research into key areas including immune dysregulation, mitochondrial dysfunction, 5'-adenosine monophosphate-activated protein kinase activation, skeletal muscle cell acidosis, and metabolomics are presented here. Studies outlined in this mini-review show many potential causes for the pathogenesis of CFS/ME and identify many potential metabolic biomarkers for the disease from the aforementioned research areas. The future of CFS/ME research should focus on building on the potential biomarkers for the disease using multi-disciplinary techniques at multiple research sites in order to produce robust data sets. Whether the metabolic changes identified in this mini-review occur as a cause or a consequence of the disease must also be established.
Collapse
|
3
|
Levy SH. Chronic Fatigue Syndrome. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Tomic S, Brkic S, Lendak D, Maric D, Medic Stojanoska M, Novakov Mikic A. Neuroendocrine disorder in chronic fatigue syndrome. Turk J Med Sci 2017; 47:1097-1103. [PMID: 29154201 DOI: 10.3906/sag-1601-110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim: Neuroendocrine disorders are considered a possible pathogenetic mechanism in chronic fatigue syndrome (CFS). The aim of our study was to determine the function of the hypothalamic-pituitary-adrenal axis (HPA) and thyroid function in women of reproductive age suffering from CFS. Materials and methods: The study included 40 women suffering from CFS and 40 healthy women (15-45 years old). Serum levels of cortisol (0800 and 1800 hours), ACTH, total T4, total T3, and TSH were measured in all subjects. The Fibro Fatigue Scale was used for determination of fatigue level. Results: Cortisol serum levels were normal in both groups. The distinctively positive moderate correlation of morning and afternoon cortisol levels that was observed in healthy women was absent in the CFS group. This may indicate a disturbed physiological rhythm of cortisol secretion. Although basal serum T4, T3, and TSH levels were normal in all subjects, concentrations of T3 were significantly lower in the CFS group. Conclusion: One-time hormone measurement is not sufficient to detect hormonal imbalance in women suffering from CFS. Absence of a correlation between afternoon and morning cortisol level could be a more representative factor for detecting HPA axis disturbance.
Collapse
|
5
|
β-Sitosterol increases mitochondrial electron transport by fluidizing mitochondrial membranes and enhances mitochondrial responsiveness to increasing energy demand by the induction of uncoupling in C2C12 myotubes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Slyepchenko A, Maes M, Köhler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci Biobehav Rev 2016; 64:83-100. [PMID: 26898639 DOI: 10.1016/j.neubiorev.2016.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The exact pathophysiology of major depressive disorder (MDD) remains elusive. The monoamine theory, which hypothesizes that MDD emerges as a result of dysfunctional serotonergic, dopaminergic and noradrenergic pathways, has guided the therapy of this illness for several decades. More recently, the involvement of activated immune, oxidative and nitrosative stress pathways and of decreased levels of neurotrophic factors has provided emerging insights regarding the pathophysiology of MDD, leading to integrated theories emphasizing the complex interplay of these mechanisms that could lead to neuroprogression. In this review, we propose an integrative model suggesting that T helper 17 (Th17) cells play a pivotal role in the pathophysiology of MDD through (i) microglial activation, (ii) interactions with oxidative and nitrosative stress, (iii) increases of autoantibody production and the propensity for autoimmunity, (iv) disruption of the blood-brain barrier, and (v) dysregulation of the gut mucosa and microbiota. The clinical and research implications of this model are discussed.
Collapse
Affiliation(s)
- Anastasiya Slyepchenko
- Womens Health Concerns Clinic, St. Joseph's Healthcare Hamilton, MiNDS Program, McMaster University; Hamilton, Ontario, Canada
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia
| | - Cristiano A Köhler
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gilberto S Alves
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Brisa S Fernandes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
7
|
Yang/Qi invigoration: an herbal therapy for chronic fatigue syndrome with yang deficiency? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945901. [PMID: 25763095 PMCID: PMC4339790 DOI: 10.1155/2015/945901] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
According to traditional Chinese medicine (TCM) theory, Yang and Qi are driving forces of biological activities in the human body. Based on the crucial role of the mitochondrion in energy metabolism, we propose an extended view of Yang and Qi in the context of mitochondrion-driven cellular and body function. It is of interest that the clinical manifestations of Yang/Qi deficiencies in TCM resemble those of chronic fatigue syndrome in Western medicine, which is pathologically associated with mitochondrial dysfunction. By virtue of their ability to enhance mitochondrial function and its regulation, Yang- and Qi-invigorating tonic herbs, such as Cistanches Herba and Schisandrae Fructus, may therefore prove to be beneficial in the treatment of chronic fatigue syndrome with Yang deficiency.
Collapse
|
8
|
Chen J, Wong HS, Leung HY, Leong PK, Chan WM, Ko KM. An ursolic acid-enriched Cynomorium songarium extract attenuates high fat diet-induced obesity in mice possibly through mitochondrial uncoupling. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Abstract
Chronic fatigue syndrome (CFS) is defined by a profound, debilitating fatigue, lasting for at least 6 months and resulting in a substantial reduction of occupational, personal, social and educational status. CFS is a relatively poorly recognized clinical entity, although everyday experience shows that there are many patients with CFS symptoms. The incidence and prevalence of CFS remain unknown in most countries; however, the working population is most affected with predominantly female patients in generative period. Although, CFS was first mentioned four centuries ago, mysterious aethiopathogensis of CFS still intrigues scientists as hundreds of studies are still published every year on the subject. About 80 different aetiological CFS factors are mentioned, which can be classified into five basic groups: genetics, immunology, infectious diseases, endocrinology and neuropsychiatry-psychology. Even today the condition is passed established based on the diagnosis by exclusion of organic and psychiatric disorders, which demands a multidisciplinary approach. As the syndrome is often misdiagnosed and mistreated, self-medication is not uncommon in CFS patients'. In addition, such patients usually suffer for years tolerating severe fatigue. Thus, at the moment there are three priorities regarding CFS; understanding pathogenesis, development of diagnostic tests and creating efficient treatment program.
Collapse
|
10
|
Davenport TE, Stevens SR, Baroni K, Van Ness M, Snell CR. Diagnostic accuracy of symptoms characterising chronic fatigue syndrome. Disabil Rehabil 2011; 33:1768-75. [PMID: 21208154 DOI: 10.3109/09638288.2010.546936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine the diagnostic accuracy for single symptoms and clusters of symptoms to distinguish between individuals with and without chronic fatigue syndrome (CFS). METHODS A cohort study was conducted in an exercise physiology laboratory in an academic setting. Thirty subjects participated in this study (n = 16 individuals with CFS; n = 14 non-disabled sedentary matched control subjects). An open-ended symptom questionnaire was administered 1 week following the second of two maximal cardiopulmonary exercise tests administered 24 h apart. RESULTS Receiver operating characteristics (ROC) curve analysis was significant for failure to recover within 1 day (area under the curve = 0.864, 95% confidence interval [CI]: 0.706-1.00, p = 0.001) but not within 7 days. Clinimetric properties of failure to recover within 1 day to predict membership in the CFS cohort were sensitivity 0.80, specificity 0.93, positive predictive value 0.92, negative predictive value 0.81, positive likelihood ratio 11.4, and negative likelihood ratio 0.22. Fatigue demonstrated high sensitivity and modest specificity to distinguish between cohorts, while neuroendocrine dysfunction, immune dysfunction, pain, and sleep disturbance demonstrated high specificity and modest sensitivity. ROC analysis suggested cut-point of three associated symptoms (0.871, 95% CI: 0.717-1.00, p < 0.001). A significant binary logistic regression model (p < 0.001) revealed immune abnormalities, sleep disturbance and pain accurately classified 92% of individuals with CFS and 88% of control subjects. CONCLUSIONS A cluster of associated symptoms distinguishes between individuals with and without CFS. Fewer associated symptoms may be necessary to establish a diagnosis of CFS than currently described.
Collapse
Affiliation(s)
- Todd E Davenport
- Department of Physical Therapy, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | | | | | | | | |
Collapse
|
11
|
Cho SY, Lee JH, Song MJ, Park PJ, Shin ES, Sohn JH, Seo DB, Lim KM, Kim WG, Lee SJ. Effects of chitooligosaccharide lactate salt on sleep deprivation-induced fatigue in mice. Biol Pharm Bull 2010; 33:1128-32. [PMID: 20606301 DOI: 10.1248/bpb.33.1128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chitooligosaccharides (COS), oligosaccharides composed of two to seven glucosamine residues, are known to exhibit various biological activities. In this study, we investigated the effects of COS in an in vivo mouse sleep deprivation-induced fatigue model in an effort to develop a functional food with anti-fatigue efficacy. Male Balb/c mice were orally administered 500 mg (kg d)(-1) of COS lactate or COS HCl for 2 weeks, and severe fatigue was induced by sleep deprivation. To evaluate the extent of fatigue, the swimming time, representing the immobility time, was measured in a forced swim test. As a result, oral intake of COS lactate-manifested anti-fatigue effects could be observed by the attenuation of fatigue-induced body weight loss and shorter immobility period. In addition, COS lactate was shown to alleviate the fatigue-induced increase in cortisol and lipid peroxidation and a decrease in superoxide dismutase (SOD) activity. Of particular note, the oral administration of COS lactate increased the mitochondrial membrane potential and the mitochondrial number significantly, indicating that COS lactate may enhance mitochondrial function. In support of this, COS lactate increased the expression of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) and cytochrome c (Cyt C) mRNA, indicating that it may increase mitochondrial biogenesis. These results suggest that COS lactate can be an effective anti-fatigue functional food, and this anti-fatigue effect may result from, at least in part, the enhancement of mitochondrial biogenesis and the inhibition of free radical generation.
Collapse
Affiliation(s)
- Si Young Cho
- Food Research Institute, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vermeulen RCW, Kurk RM, Visser FC, Sluiter W, Scholte HR. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J Transl Med 2010; 8:93. [PMID: 20937116 PMCID: PMC2964609 DOI: 10.1186/1479-5876-8-93] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 10/11/2010] [Indexed: 01/02/2023] Open
Abstract
Background The aim of this study was to investigate the possibility that a decreased mitochondrial ATP synthesis causes muscular and mental fatigue and plays a role in the pathophysiology of the chronic fatigue syndrome (CFS/ME). Methods Female patients (n = 15) and controls (n = 15) performed a cardiopulmonary exercise test (CPET) by cycling at a continuously increased work rate till maximal exertion. The CPET was repeated 24 h later. Before the tests, blood was taken for the isolation of peripheral blood mononuclear cells (PBMC), which were processed in a special way to preserve their oxidative phosphorylation, which was tested later in the presence of ADP and phosphate in permeabilized cells with glutamate, malate and malonate plus or minus the complex I inhibitor rotenone, and succinate with rotenone plus or minus the complex II inhibitor malonate in order to measure the ATP production via Complex I and II, respectively. Plasma CK was determined as a surrogate measure of a decreased oxidative phosphorylation in muscle, since the previous finding that in a group of patients with external ophthalmoplegia the oxygen consumption by isolated muscle mitochondria correlated negatively with plasma creatine kinase, 24 h after exercise. Results At both exercise tests the patients reached the anaerobic threshold and the maximal exercise at a much lower oxygen consumption than the controls and this worsened in the second test. This implies an increase of lactate, the product of anaerobic glycolysis, and a decrease of the mitochondrial ATP production in the patients. In the past this was also found in patients with defects in the mitochondrial oxidative phosphorylation. However the oxidative phosphorylation in PBMC was similar in CFS/ME patients and controls. The plasma creatine kinase levels before and 24 h after exercise were low in patients and controls, suggesting normality of the muscular mitochondrial oxidative phosphorylation. Conclusion The decrease in mitochondrial ATP synthesis in the CFS/ME patients is not caused by a defect in the enzyme complexes catalyzing oxidative phosphorylation, but in another factor. Trial registration Clinical trials registration number: NL16031.040.07
Collapse
Affiliation(s)
- Ruud C W Vermeulen
- CFS/ME and Pain Research Center Amsterdam, Waalstraat 25-31, 1078 BR Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Conceptual model for physical therapist management of chronic fatigue syndrome/myalgic encephalomyelitis. Phys Ther 2010; 90:602-14. [PMID: 20185614 DOI: 10.2522/ptj.20090047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fatigue is one of the most common reasons why people consult health care providers. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is one cause of clinically debilitating fatigue. The underdiagnosis of CFS/ME, along with the spectrum of symptoms that represent multiple reasons for entry into physical therapy settings, places physical therapists in a unique position to identify this health condition and direct its appropriate management. The diagnosis and clinical correlates of CFS/ME are becoming better understood, although the optimal clinical management of this condition remains controversial. The 4 aims of this perspective article are: (1) to summarize the diagnosis of CFS/ME with the goal of promoting the optimal recognition of this condition by physical therapists; (2) to discuss aerobic system and cognitive deficits that may lead to the clinical presentation of CFS/ME; (3) to review the evidence for graded exercise with the goal of addressing limitations in body structures and functions, activity, and participation in people with CFS/ME; and (4) to present a conceptual model for the clinical management of CFS/ME by physical therapists.
Collapse
|
14
|
Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC SYSTEMS BIOLOGY 2008; 2:95. [PMID: 18986552 PMCID: PMC2625353 DOI: 10.1186/1752-0509-2-95] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 11/06/2008] [Indexed: 01/21/2023]
Abstract
Background Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways and candidate biomarkers. Here we show that the additional inclusion of genetic marker data allows one to characterize network relationships as causal or reactive in a chronic fatigue syndrome (CFS) data set. Results We combine WGCNA with genetic marker data to identify a disease-related pathway and its causal drivers, an analysis which we refer to as "Integrated WGCNA" or IWGCNA. Specifically, we present the following IWGCNA approach: 1) construct a co-expression network, 2) identify trait-related modules within the network, 3) use a trait-related genetic marker to prioritize genes within the module, 4) apply an integrated gene screening strategy to identify candidate genes and 5) carry out causality testing to verify and/or prioritize results. By applying this strategy to a CFS data set consisting of microarray, SNP and clinical trait data, we identify a module of 299 highly correlated genes that is associated with CFS severity. Our integrated gene screening strategy results in 20 candidate genes. We show that our approach yields biologically interesting genes that function in the same pathway and are causal drivers for their parent module. We use a separate data set to replicate findings and use Ingenuity Pathways Analysis software to functionally annotate the candidate gene pathways. Conclusion We show how WGCNA can be combined with genetic marker data to identify disease-related pathways and the causal drivers within them. The systems genetics approach described here can easily be used to generate testable genetic hypotheses in other complex disease studies.
Collapse
|