1
|
Padilla S, Prado R, Anitua E. An evolutionary history of F12 gene: Emergence, loss, and vulnerability with the environment as a driver. Bioessays 2023; 45:e2300077. [PMID: 37750435 DOI: 10.1002/bies.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.
Collapse
Affiliation(s)
- Sabino Padilla
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
2
|
Bertoglio F, Ko YP, Thomas S, Giordano L, Scommegna FR, Meier D, Polten S, Becker M, Arora S, Hust M, Höök M, Visai L. Antibodies to coagulase of Staphylococcus aureus crossreact to Efb and reveal different binding of shared fibrinogen binding repeats. Front Immunol 2023; 14:1221108. [PMID: 37828992 PMCID: PMC10565355 DOI: 10.3389/fimmu.2023.1221108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 10/14/2023] Open
Abstract
Staphylococcus aureus pathology is caused by a plethora of virulence factors able to combat multiple host defence mechanisms. Fibrinogen (Fg), a critical component in the host coagulation cascade, plays an important role in the pathogenesis of this bacterium, as it is the target of numerous staphylococcal virulence proteins. Amongst its secreted virulence factors, coagulase (Coa) and Extracellular fibrinogen-binding protein (Efb) share common Fg binding motives and have been described to form a Fg shield around staphylococcal cells, thereby allowing efficient bacterial spreading, phagocytosis escape and evasion of host immune system responses. Targeting these proteins with monoclonal antibodies thus represents a new therapeutic option against S. aureus. To this end, here we report the selection and characterization of fully human, sequence-defined, monoclonal antibodies selected against the C-terminal of coagulase. Given the functional homology between Coa and Efb, we also investigated if the generated antibodies bound the two virulence factors. Thirteen unique antibodies were isolated from naïve antibodies gene libraries by antibody phage display. As anticipated, most of the selected antibodies showed cross-recognition of these two proteins and among them, four were able to block the interaction between Coa/Efb and Fg. Furthermore, our monoclonal antibodies could interact with the two main Fg binding repeats present at the C-terminal of Coa and distinguish them, suggesting the presence of two functionally different Fg-binding epitopes.
Collapse
Affiliation(s)
- Federico Bertoglio
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
- School of Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Liliana Giordano
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
| | - Francesca Romana Scommegna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
| | - Doris Meier
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marlies Becker
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, Istituti Clinici Scientifici (ICS) Maugeri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| |
Collapse
|
3
|
Wong E, Xu F, Joffre J, Nguyen N, Wilhelmsen K, Hellman J. ERK1/2 Has Divergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability. Shock 2021; 55:349-356. [PMID: 32826812 PMCID: PMC8139579 DOI: 10.1097/shk.0000000000001639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Endothelial cells play a major role in inflammatory responses to infection and sterile injury. Endothelial cells express Toll-like receptor 4 (TLR4) and are activated by LPS to express inflammatory cytokines/chemokines, and to undergo functional changes, including increased permeability. The extracellular signal-regulated kinase 1/2 (ERK1/2) mediates pro-inflammatory signaling in monocytes and macrophages, but the role of ERK1/2 in LPS-induced activation of microvascular endothelial cells has not been defined. We therefore studied the role of ERK1/2 in LPS-induced inflammatory activation and permeability of primary human lung microvascular endothelial cells (HMVEC). Inhibition of ERK1/2 augmented LPS-induced IL-6 and vascular cell adhesion protein (VCAM-1) production by HMVEC. ERK1/2 siRNA knockdown also augmented IL-6 production by LPS-treated HMVEC. Conversely, ERK1/2 inhibition abrogated permeability and restored cell-cell junctions of LPS-treated HMVEC. Consistent with the previously described pro-inflammatory role for ERK1/2 in leukocytes, inhibition of ERK1/2 reduced LPS-induced cytokine/chemokine production by primary human monocytes. Our study identifies a complex role for ERK1/2 in TLR4-activation of HMVEC, independent of myeloid differentiation primary response gene (MyD88) and TIR domain-containing adaptor inducing IFN-β (TRIF) signaling pathways. The activation of ERK1/2 limits LPS-induced IL-6 production by HMVEC, while at the same time promoting HMVEC permeability. Conversely, ERK1/2 activation promotes IL-6 production by human monocytes. Our results suggest that ERK1/2 may play an important role in the nuanced regulation of endothelial cell inflammation and vascular permeability in sepsis and injury.
Collapse
Affiliation(s)
- Erika Wong
- Department of Pediatrics, Division of Critical Care, UCSF Benioff Children’s Hospital, San Francisco, California, 94143
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75571 Paris cedex 12, France
| | - Nina Nguyen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| |
Collapse
|
4
|
Kasuda S, Sakurai Y, Tatsumi K, Takeda T, Kudo R, Yuui K, Hatake K. Enhancement of Tissue Factor Expression in Monocyte-Derived Dendritic Cells by Pentraxin 3 and Its Modulation by C1 Esterase Inhibitor. Int Arch Allergy Immunol 2019; 179:158-164. [PMID: 30893690 DOI: 10.1159/000496744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have previously shown that human monocyte-derived dendritic cells (moDCs) may participate in immune system-mediated hypercoagulable state through enhanced tissue factor (TF) expression and that the complement system may be involved in this process. OBJECTIVES The aim of this study was to explore the role of pentraxin 3 (PTX3) and the complement system in enhanced TF expression in moDCs. METHODS moDCs were generated from isolated human monocytes. PTX3 levels in whole human blood supplemented with moDCs were determined after lipopolysaccharide (LPS) stimulation. PTX3 release by the generated moDCs upon LPS stimulation was also assessed. The effect of PTX3 on whole blood coagulation was investigated using thromboelastometric analysis. TF expression in stationary moDCs treated with LPS and/or PTX3 was determined by measuring TF activity. The effect of complement inhibitors on TF activity in moDCs treated with LPS and/or PTX3 under low-shear conditions was evaluated. RESULTS PTX3 levels were higher in whole blood supplemented with moDCs than in the presence of monocytes and were further elevated by LPS stimulation. PTX3 release from generated moDCs was also increased by LPS stimulation. PTX3 reduced whole blood coagulation time in a dose-dependent manner. However, PTX3 did not increase TF expression in stationary moDCs. Under low-shear conditions, PTX3 increased TF expression in moDCs. C1 esterase inhibitor (C1-inh) suppressed this effect. CONCLUSIONS PTX3 might have a thrombophilic activity and enhance TF expression in moDCs under low-shear conditions. Furthermore, suppression of moDC-associated hypercoagulability by C1-inh might be partly ascribed to its inhibitory effect on PTX3.
Collapse
Affiliation(s)
- Shogo Kasuda
- Department of Legal Medicine, Nara Medical University, Kashihara, Japan
| | - Yoshihiko Sakurai
- Department of Pediatrics, Matsubara Tokushukai Hospital, Matsubara, Japan,
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tomohiro Takeda
- Department of Clinical Laboratory Science, Kansai University of Health Sciences, Kumatori, Japan
| | - Risa Kudo
- Department of Legal Medicine, Nara Medical University, Kashihara, Japan
| | - Katsuya Yuui
- Department of Legal Medicine, Nara Medical University, Kashihara, Japan
| | - Katsuhiko Hatake
- Department of Legal Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
5
|
Experimental hypercoagulable state induced by tissue factor expression in monocyte-derived dendritic cells and its modulation by C1 inhibitor. J Thromb Thrombolysis 2018; 46:219-226. [PMID: 29860607 DOI: 10.1007/s11239-018-1688-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The crosstalk between immune and coagulation systems plays pivotal roles in host defense, which may involve monocyte-derived dendritic cells (moDCs). Our objectives were to elucidate the role of moDCs in coagulation under inflammatory conditions and the involvement of the complement system. We assessed the effects of lipopolysaccharide (LPS)-stimulated moDCs on coagulation using whole blood thromboelastometry in the presence of complement inhibitors. The sum of clotting time and clot formation time (CT plus CFT) in whole blood thromboelastometry was significantly more reduced in the presence of moDCs than in the absence of monocytes or moDCs and in the presence of monocytes, indicating a more potent coagulability of moDCs. The mRNA expression of coagulation-related proteins in moDCs was analyzed by quantitative PCR, which showed an increase only in the mRNA levels of tissue factor (TF). TF protein expression was assessed by western blot analysis and an activity assay, revealing higher TF expression in moDCs than that in monocytes. The in vitro moDC-associated hypercoagulable state was suppressed by a TF-neutralizing antibody, whereas LPS enhanced the in vitro hypercoagulation further. C1 inhibitor suppressed the in vitro LPS-enhanced whole blood hypercoagulability in the presence of moDCs and the increased TF expression in moDCs. These results suggest a significant role of moDCs and the complement system through TF expression in a hypercoagulable state under inflammatory conditions and demonstrate the suppressive effects of C1 inhibitor on moDC-associated hypercoagulation.
Collapse
|
6
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
7
|
LeGrand EK, Day JD. Self-harm to preferentially harm the pathogens within: non-specific stressors in innate immunity. Proc Biol Sci 2016; 283:rspb.2016.0266. [PMID: 27075254 PMCID: PMC4843660 DOI: 10.1098/rspb.2016.0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Therapies with increasing specificity against pathogens follow the immune system's evolutionary course in maximizing host defence while minimizing self-harm. Nevertheless, even completely non-specific stressors, such as reactive molecular species, heat, nutrient and oxygen deprivation, and acidity can be used to preferentially harm pathogens. Strategic use of non-specific stressors requires exploiting differences in stress vulnerability between pathogens and hosts. Two basic vulnerabilities of pathogens are: (i) the inherent vulnerability to stress of growth and replication (more immediately crucial for pathogens than for host cells) and (ii) the degree of pathogen localization, permitting the host's use of locally and regionally intense stress. Each of the various types of non-specific stressors is present during severe infections at all levels of localization: (i) ultra-locally within phagolysosomes, (ii) locally at the infected site, (iii) regionally around the infected site and (iv) systemically as part of the acute-phase response. We propose that hosts strategically use a coordinated system of non-specific stressors at local, regional and systemic levels to preferentially harm the pathogens within. With the rising concern over emergence of resistance to specific therapies, we suggest more scrutiny of strategies using less specific therapies in pathogen control. Hosts' active use of multiple non-specific stressors is likely an evolutionarily basic defence whose retention underlies and supplements the well-recognized immune defences that directly target pathogens.
Collapse
Affiliation(s)
- Edmund K LeGrand
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Judy D Day
- Department of Mathematics and National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
8
|
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 2015; 21:827-46. [DOI: 10.1177/1753425915606525] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing to their widespread distribution throughout the body and their constant interaction with circulating blood. While not viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors (TLRs), which activate intracellular inflammatory pathways mediated through NF-κB and the MAP kinases. TLR agonists, including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis, highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic responses to infection and sepsis.
Collapse
Affiliation(s)
- Samira Khakpour
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Fiusa MML, Carvalho-Filho MA, Annichino-Bizzacchi JM, De Paula EV. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective. BMC Med 2015; 13:105. [PMID: 25943883 PMCID: PMC4422540 DOI: 10.1186/s12916-015-0327-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world's leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community. DISCUSSION During sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis. Reappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.
Collapse
Affiliation(s)
- Maiara Marx Luz Fiusa
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil.
| | - Marco Antonio Carvalho-Filho
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil.
| | - Joyce M Annichino-Bizzacchi
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil. .,Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| | - Erich V De Paula
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil. .,Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Synergy of local, regional, and systemic non-specific stressors for host defense against pathogens. J Theor Biol 2014; 367:39-48. [PMID: 25457230 DOI: 10.1016/j.jtbi.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/23/2022]
Abstract
The immune brinksmanship conceptual model postulates that many of the non-specific stressful components of the acute-phase response (e.g. fever, loss of appetite, iron and zinc sequestration) are host-derived systemic stressors used with the "hope" that pathogens will be harmed relatively more than the host. The concept proposes that pathogens, needing to grow and replicate in order to invade their host, should be relatively more vulnerable to non-specific systemic stress than the host and its cells. However, the conceptual model acknowledges the risk to the host in that the gamble to induce systemic self-harming stress to harm pathogens may not pay off in the end. We developed an agent-based model of a simplified host having a local infection to evaluate the utility of non-specific stress, harming host and pathogen alike, for host defense. With our model, we explore the benefits and risks of self-harming strategies and confirm the immune brinksmanship concept of the potential of systemic stressors to be an effective but costly host defense. Further, we extend the concept by including in our model the effects of local and regional non-specific stressors at sites of infection as additional defenses. These include the locally hostile inflammatory environment and the stress of reduced perfusion in the infected region due to coagulation and vascular leakage. In our model, we found that completely non-specific stressors at the local, regional, and systemic levels can act synergistically in host defense.
Collapse
|
11
|
Alcock J, Brainard AH. Gene–environment mismatch in decompression sickness and air embolism. Med Hypotheses 2010; 75:199-203. [DOI: 10.1016/j.mehy.2010.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/17/2010] [Indexed: 02/04/2023]
|