1
|
Vijayakumar KK, Manoharan D, Subbarayan R, Shrestha R, Harshavardhan S. Construction of pVAX-1-based linear covalently closed vector with improved transgene expression. Mol Biol Rep 2024; 51:934. [PMID: 39180671 DOI: 10.1007/s11033-024-09856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
INTRODUCTION This study presents a Mammalian Linear Expression System (MLES), a linear covalently closed (LCC) vector based on pVAX-1. The purpose of this system was to improve gene expression in mammalian cells and to test the efficacy of MLES in transient transfection and transgene expression using in vitro and in vivo models. Additionally, we aimed to evaluate potential inflammatory responses in vivo. MATERIALS AND METHODS MLES was developed by modifying pVAX-1, and the construct was confirmed by gel electrophoresis. Lipofectamine®2000 was used to assess the transfection efficiency and expression of MLES in various cell lines. In vivo studies were conducted in mice injected with MLES/EGFP, and the resulting transfection efficiency, gene expression, and inflammatory responses were analyzed. RESULTS MLES exhibited higher transfection efficiency and expression levels compared to pVAX-1 when tested on HEK-293, CHO-K1, and NIH-3T3 cells. When tested in vivo, MLES/EGFP showed elevated expression in the heart, kidney, liver, and spleen compared with pVAX-1/EGFP. Minimal changes are observed in the lungs. Additionally, MLES induced a reduced inflammatory response in mice compared with pVAX-1/EGFP. CONCLUSIONS MLES offer improved transfection efficiency and reduced inflammation, representing a significant advancement in gene therapy and recombinant protein production. Further research on MLES-mediated gene expression and immune modulation will enhance gene therapy strategies.
Collapse
Affiliation(s)
- Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Devaprakash Manoharan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutic and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rupendra Shrestha
- Research and Collaboration, Anka Analytica, Melbourne, Australia
- External Consultant, Independent Researcher, Pittsfield, MA, USA
| | - Shakila Harshavardhan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
2
|
Alves CPA, Prazeres DMF, Monteiro GA. Minicircle Biopharmaceuticals–An Overview of Purification Strategies. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.612594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Minicircles are non-viral delivery vectors with promising features for biopharmaceutical applications. These vectors are plasmid-derived circular DNA molecules that are obtained in vivo in Escherichia coli by the intramolecular recombination of a parental plasmid, which generates a minicircle containing the eukaryotic therapeutic cassette of interest and a miniplasmid containing the prokaryotic backbone. The production process results thus in a complex mixture, which hinders the isolation of minicircle molecules from other DNA molecules. Several strategies have been proposed over the years to meet the challenge of purifying and obtaining high quality minicircles in compliance with the regulatory guidelines for therapeutic use. In minicircle purification, the characteristics of the strain and parental plasmid used have a high impact and strongly affect the purification strategy that can be applied. This review summarizes the different methods developed so far, focusing not only on the purification method itself but also on its dependence on the upstream production strategy used.
Collapse
|
3
|
Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Successful gene therapies rely on methods that safely introduce DNA into target cells and enable subsequent expression of proteins. To that end, peptides are an attractive materials platform for DNA delivery, facilitating condensation into nanoparticles, delivery into cells, and subcellular release to enable protein expression. Peptides are programmable materials that can be designed to address biocompatibility, stability, and subcellular barriers that limit efficiency of non-viral gene delivery systems. This review focuses on fundamental structure-function relationships regarding peptide design and their impact on nanoparticle physical properties, biologic activity, and biocompatibility. Recent peptide technologies utilize multi-dimensional structures, non-natural chemistries, and combinations of peptides with lipids to achieve desired properties and efficient transfection. Advances in DNA cargo design are also presented to highlight further opportunities for peptide-based gene delivery. Modern DNA designs enable prolonged expression compared to traditional plasmids, providing an additional component that can be synergized with peptide carriers for improved transfection. Peptide transfection systems are poised to become a flexible and efficient platform incorporating new chemistries, functionalities, and improved DNA cargos to usher in a new era of gene therapy.
Collapse
|
4
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mu Y, Hao Z, He J, Yan R, Liu H, Zhang L, Liu H, Hu X, Li Q. Effects of β-like cell autotransplantation through hepatic arterial intervention on diabetic dogs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:1333-8. [PMID: 27328726 DOI: 10.3109/21691401.2015.1052471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exogenous insulin and EGFP genes were transduced into bone marrow mesenchymal stem cells of beagle dogs using the retroviral vector pMSCV to prepare β-like cells. These cells were autotransplanted into the liver of diabetic dogs through hepatic arterial intervention, and physiological indices before and after transplantation were monitored. Autotransplantation of β-like cells significantly improved blood sugar, insulin levels, and body mass of diabetic dogs (P < 0.01) continuously for over 80 weeks. Since the liver function remained normal and no tumors formed, this method was determined to be reliable and safe. Intrahepatic autotransplantation of β-like cells had long-term, reliable, and safe therapeutic effects on diabetic dogs.
Collapse
Affiliation(s)
- Yongxu Mu
- a Department of Endocrinology , First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an , PR China.,b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Zhiming Hao
- a Department of Endocrinology , First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an , PR China
| | - Junfeng He
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Ruiqiang Yan
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Haiyan Liu
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Lei Zhang
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Heming Liu
- a Department of Endocrinology , First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an , PR China.,b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Xiaoyan Hu
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| | - Qiming Li
- b Department of Intervention , The First Affiliated Hospital of Baotou Medical College , Baotou , PR China
| |
Collapse
|
6
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
7
|
Tolmachov OE. Transgenic DNA modules with pre-programmed self-destruction: Universal molecular devices to escape 'genetic litter' in gene and cell therapy. Med Hypotheses 2015; 85:686-9. [PMID: 26319641 DOI: 10.1016/j.mehy.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/03/2015] [Accepted: 08/15/2015] [Indexed: 02/06/2023]
Abstract
Gene delivery to human somatic cells is a well-established therapeutic strategy to treat a variety of diseases. In addition, gene transfer to human cells is required to generate human induced pluripotent cells and also to eliminate tumorigenic undifferentiated cells in many types of stem-cell derived transplantation material. The expression of transgenes in these medical technologies is often required only in some of the recipient cells and only in specific limited time-windows, with inappropriately located or untimely expressed transgenes presenting a risk of undesired collateral effects. Unfortunately, current gene transfer procedures commonly result in a number of cells in the patient's body containing fragments of transferred genetic material which are either not therapeutically necessary at all, are no longer necessary or are necessary but in some other cells. Such transgenic material in the patient, created as a by-product of the chosen therapeutic procedure, constitutes, in fact, 'genetic litter', that is, persisting potentially-hazardous foreign genetic material which is neither required therapeutically nor explicitly chosen by an informed and free-willing person as an artificial body element. Wider use and more frequent administration of gene and cell therapy in the future are likely to give greater prominence to the issue of misdelivered genetic medicines and of their unwanted remainders accumulating in human bodies. Thus, novel DNA templates, which, on the one hand, are capable of providing transgene expression over broad time-windows, and, on the other hand, do not leave unwanted permanent 'genetic traces', are required. I propose that the problem of 'genetic litter' in patients' bodies can be addressed through the employment of a new type of gene vectors delivering DNA-based transgenic modules with pre-programmed self-destruction. Such vectors could deliver therapeutic DNA cargo and then execute self-liquidation through pre-scheduled activation of co-delivered genome editing tools, such as CRISPR/Cas9 nucleases, specific for the DNA to be eliminated. In this model, all unnecessary transgenic DNA is edited away precisely at a desired time point. Activity of the gene correction apparatus for the specific and effective destruction of transgenic DNA could be turned on by well-timed external signals or could be triggered through intracellular sensors of particular epigenetic signatures. It is expected that the employment of the proposed DNA-based gene vectors equipped with a transgene self-destruct mechanism can extend the safe and ethical application of gene and cell therapy to a broader range of curative and lifestyle-choice medical treatments, e.g., full body prophylactic gene therapy of cancer.
Collapse
Affiliation(s)
- Oleg E Tolmachov
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Tolmachov OE. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery. Med Hypotheses 2012; 78:632-5. [PMID: 22356834 DOI: 10.1016/j.mehy.2012.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
Abstract
The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles.
Collapse
Affiliation(s)
- Oleg E Tolmachov
- Cardiovascular Science, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
9
|
Chabot S, Orio J, Schmeer M, Schleef M, Golzio M, Teissié J. Minicircle DNA electrotransfer for efficient tissue-targeted gene delivery. Gene Ther 2012; 20:62-8. [DOI: 10.1038/gt.2011.215] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|