1
|
Hong W, Tang L, Ge R, Li W, Shen X, Hong L, Xu X. Persistent Abnormal Immunocytes Induced Systemic Bone Loss in Locally Irradiated Rats. Calcif Tissue Int 2021; 109:706-718. [PMID: 34191050 DOI: 10.1007/s00223-021-00883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Chronic and systemic bone complications frequently occur in patients who undergo radiotherapy; however, the pathological mechanisms underlying these complications remain unclear. This study aimed to observe persistent and systemic changes in locally irradiated rats and to determine the systemic pathological changes that persistently affect bone metabolism. We examined the inflammatory and oxidative stress responses that occurred after local irradiation using enzyme immunoassays and biochemical analyses. Lymphocytes obtained from the blood, spleen, thymus, and bone marrow were evaluated using flow cytometry. The proliferation and apoptosis characteristics of co-cultured bone marrow-derived mesenchymal stem cells (BMSCs) were detected by MTT assay and PI/Annexin V-FITC staining, respectively, and the differentiation of BMSCs was measured according to alkaline phosphatase (ALP) staining, alizarin red staining, and Oil Red O staining and by evaluating the mRNA expression of ALP, osteocalcin (OCN), osteopontin (OPN), collagen I, Runx2, and PPARγ. Our results revealed that no significant or continuous differences were present in the inflammatory response or the oxidative stress response throughout the body after local irradiation. B lymphocyte levels increased continuously in the blood, spleen, and bone marrow after local irradiation. T lymphocyte levels were decreased at 2 weeks after local irradiation, and CD8+T lymphocyte levels were increased in the blood, thymus, and bone marrow at 12 weeks after local irradiation. The ratio of CD4+/CD8+T lymphocytes began to decrease during the early phase after local irradiation and became significantly decreased at 12 weeks after local irradiation. Normal BMSCs co-cultured with lymphocytes derived from irradiated rats exhibited decreased proliferation and increased apoptosis, and the ALP staining intensity, alizarin red staining intensity, and mRNA expression of related genes were all also decreased. Oil Red O staining intensity and mRNA expression of PPARγ were both increased. Lymphocyte levels contribute to chronic and systemic bone complications after radiotherapy by inhibiting the proliferation and osteoblastogenesis of BMSCs.
Collapse
Affiliation(s)
- Wei Hong
- Department of Geriatrics and Gerontology, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China.
| | - Lichen Tang
- Department of Breast Surgery, Shanghai Cancer Hospital, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Weiping Li
- Department of General Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Lixia Hong
- Department of General Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Xiaoya Xu
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Gans I, El Abiad JM, James AW, Levin AS, Morris CD. Administration of TGF-ß Inhibitor Mitigates Radiation-induced Fibrosis in a Mouse Model. Clin Orthop Relat Res 2021; 479:468-474. [PMID: 33252888 PMCID: PMC7899598 DOI: 10.1097/corr.0000000000001286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation-induced fibrosis is a long-term adverse effect of external beam radiation therapy for cancer treatment that can cause pain, loss of function, and decreased quality of life. Transforming growth factor beta (TGF-β) is believed to be critical to the development of radiation-induced fibrosis, and TGF-β inhibition decreases the development of fibrosis. However, no treatment exists to prevent radiation-induced fibrosis. Therefore, we aimed to mitigate the development of radiation-induced fibrosis in a mouse model by inhibiting TGF-β. QUESTION/PURPOSES Does TGF-β inhibition decrease the development of muscle fibrosis induced by external beam radiation in a mouse model? METHODS Twenty-eight 12-week-old male C57BL/6 mice were assigned randomly to three groups: irradiated mice treated with TGF-βi, irradiated mice treated with placebo, and control mice that received neither irradiation nor treatment. The irradiated mice received one 50-Gy fraction of radiation to the right hindlimb before treatment initiation. Mice treated with TGF-c (n = 10) received daily intraperitoneal injections of a small-molecule inhibitor of TGF-β (1 mg/kg) in a dimethyl sulfoxide vehicle for 8 weeks (seven survived to histologic analysis). Mice treated with placebo (n = 10) received daily intraperitoneal injections of only a dimethyl sulfoxide vehicle for 8 weeks (10 survived to histologic analysis). Control mice (n = 8) received neither radiation nor TGF-β treatment. Control mice were euthanized at 3 months because they were not expected to exhibit any changes related to treatment. Mice in the two treatment groups were euthanized 9 months after radiation, and the quadriceps of each thigh was sampled. Masson's trichome stain was used to assess muscle fibrosis. Slides were viewed at 10 × magnification using bright-field microscopy, and in a blinded fashion, five representative images per mouse were used to quantify fibrosis. The mean ± SD fibrosis pixel densities in the TGF-βi and radiation-only groups were compared using Mann-Whitney U tests. The ratio of fibrosis to muscle was calculated using the mean fibrosis per slide in the TGF-βi group to standardize measurements. Alpha was set at 0.05. RESULTS The mean (± SD) percentage of fibrosis per slide was greater in the radiation-only group (1.2% ± 0.42%) than in the TGF-βi group (0.14% ± 0.09%) (odds ratio 0.12 [95% CI 0.07 to 0.20]; p < 0.001). Among control mice, mean fibrosis was 0.05% ± 0.02% per slide. Mice in the radiation-only group had 9.1 times the density of fibrosis as did mice in the TGF-βi group. CONCLUSION Our study provides preliminary evidence that the fibrosis associated with radiation therapy to a quadriceps muscle can be reduced by treatment with a TGF-β inhibitor in a mouse model. CLINICAL RELEVANCE If these observations are substantiated by further investigation into the role of TGF-β inhibition on the development of radiation-induced fibrosis in larger animal models and humans, our results may aid in the development of novel therapies to mitigate this complication of radiation treatment.
Collapse
Affiliation(s)
- Itai Gans
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Jad M El Abiad
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Aaron W James
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Adam S Levin
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Carol D Morris
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| |
Collapse
|
3
|
Klaus R, Niyazi M, Lange-Sperandio B. Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat Oncol 2021; 16:43. [PMID: 33632272 PMCID: PMC7905925 DOI: 10.1186/s13014-021-01764-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation nephropathy (RN) is a kidney injury induced by ionizing radiation. In a clinical setting, ionizing radiation is used in radiotherapy (RT). The use and the intensity of radiation therapy is limited by normal-tissue damage including kidney toxicity. Different thresholds for kidney toxicity exist for different entities of RT. Histopathologic features of RN include vascular, glomerular and tubulointerstitial damage. The different molecular and cellular pathomechanisms involved in RN are not fully understood. Ionizing radiation causes double-stranded breaks in the DNA, followed by cell death including apoptosis and necrosis of renal endothelial, tubular and glomerular cells. Especially in the latent phase of RN oxidative stress and inflammation have been proposed as putative pathomechanisms, but so far no clear evidence was found. Cellular senescence, activation of the renin–angiotensin–aldosterone-system and vascular dysfunction might contribute to RN, but only limited data is available. Several signalling pathways have been identified in animal models of RN and different approaches to mitigate RN have been investigated. Drugs that attenuate cell death and inflammation or reduce oxidative stress and renal fibrosis were tested. Renin–angiotensin–aldosterone-system blockade, anti-apoptotic drugs, statins, and antioxidants have been shown to reduce the severity of RN. These results provide a rationale for the development of new strategies to prevent or reduce radiation-induced kidney toxicity.
Collapse
Affiliation(s)
- Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Bärbel Lange-Sperandio
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
4
|
Cohen EP, Farese AM, Parker GA, Kane MA, MacVittie TJ. Lack of Cellular Inflammation in a Non-human Primate Model of Radiation Nephropathy. HEALTH PHYSICS 2020; 119:588-593. [PMID: 32941291 PMCID: PMC8932376 DOI: 10.1097/hp.0000000000001329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inflammation is commonly cited as a mechanism of delayed effects of acute radiation exposure (DEARE). Confirmation of its presence could provide significant insight to targeted use of treatments or mitigators of DEARE. We sought to quantify the presence of cellular inflammation in kidneys of non-human primates that developed acute and chronic kidney injury after a partial body irradiation exposure. We show herein that cellular inflammation is not found as a component of either acute or chronic kidney injury. Other mechanistic pathways of injury must be sought.
Collapse
Affiliation(s)
- Eric P. Cohen
- Departments of Medicine, University of Maryland, School of Medicine, Baltimore, MD
| | - Ann M. Farese
- Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD
| | | | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Thomas J. MacVittie
- Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Hasan HF, Radwan RR, Galal SM. Bradykinin‐potentiating factor isolated from
Leiurus quinquestriatus
scorpion venom alleviates cardiomyopathy in irradiated rats
via
remodelling of the RAAS pathway. Clin Exp Pharmacol Physiol 2019; 47:263-273. [DOI: 10.1111/1440-1681.13202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department National Center for Radiation Research and Technology (NCRRT) Atomic Energy Authority Cairo Egypt
| | - Rasha R. Radwan
- Drug Radiation Research Department National Center for Radiation Research and Technology Atomic Energy Authority Cairo Egypt
| | - Shereen Mohamed Galal
- Health Radiation Research Department National Center for Radiation Research and Technology Atomic Energy Authority Cairo Egypt
| |
Collapse
|
6
|
Cohen EP, Hankey KG, Bennett AW, Farese AM, Parker GA, MacVittie TJ. Acute and Chronic Kidney Injury in a Non-Human Primate Model of Partial-Body Irradiation with Bone Marrow Sparing. Radiat Res 2017; 188:661-671. [PMID: 29035153 DOI: 10.1667/rr24857.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of medical countermeasures against acute and delayed multi-organ injury requires animal models predictive of the human response to radiation and its treatment. Late chronic injury is a well-known feature of radiation nephropathy, but acute kidney injury has not been reported in an appropriate animal model. We have established a single-fraction partial-body irradiation model with minimal marrow sparing in non-human primates. Subject-based medical management was used including parenteral fluids according to prospective morbidity criteria. We show herein that 10 or 11 Gy exposures caused both acute and chronic kidney injury. Acute and chronic kidney injury appear to be dose-independent between 10 and 11 Gy. Acute kidney injury was identified during the first 50 days postirradiation and appeared to resolve before the occurrence of chronic kidney injury, which was progressively more severe up to 180 days postirradiation, which was the end of the study. These findings show that mitigation of the acute radiation syndrome by medical management will unmask delayed late effects that occur months after partial-body irradiation. They further emphasize that both acute and chronic changes in kidney function must be taken into account in the use and timing of mitigators and medical management for acute radiation syndrome and delayed effects of acute radiation exposure (DEARE).
Collapse
Affiliation(s)
| | - Kim G Hankey
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| | - Alexander W Bennett
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| | - Ann M Farese
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| | | | - Thomas J MacVittie
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
7
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
8
|
Golla S, Golla JP, Krausz KW, Manna SK, Simillion C, Beyoğlu D, Idle JR, Gonzalez FJ. Metabolomic Analysis of Mice Exposed to Gamma Radiation Reveals a Systemic Understanding of Total-Body Exposure. Radiat Res 2017; 187:612-629. [PMID: 28467754 DOI: 10.1667/rr14592.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diagnostic markers are needed for accidental or deliberate radiation exposure that could cause acute and chronic radiation toxicity. Biomarkers of temporal, dose-dependent, aging-attenuated and multiple radiation exposures have been previously described by others. However, the physiological origin and biochemical networks that generate these biomarkers and their association at the molecular level have yet to be explored. Hence, the discovery and identification of total-body-irradiation-induced tissue specific biomarkers remains an enormous challenge within radiation biodosimetry research. To determine the tissue level response of total-body exposure (6 Gy), metabolomics analysis was carried out on radiosensitive tissues bone marrow, ileum, liver, muscle and lung as well as serum and on urine within 12 h postirradiation. Differences in the metabolic signatures between the sham and gamma-irradiated groups were analyzed by hydrophilic interaction liquid chromatography (HILIC)-based ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS). A panel of 67 biomarkers identified in radiosensitive tissues and biofluids (serum and urine) at a 6 Gy dose. Among the identified biomarkers, 3-methylglutarylcarnitine (3-MGC) was found to be a novel metabolite in liver, serum and urine that could potentially be an early radiation response marker. The degree of metabolic changes among different tissues showed perturbations in pathways including DNA methylation, energy, nucleic acid, amino acid, glutathione and bile acid metabolism. These results highlight metabolomics as a potential novel approach to understand functional alterations in the metabolome that could be adapted for use in the rapid assessment of radiation exposure and triage protocols in the case of nuclear incidents.
Collapse
Affiliation(s)
- Srujana Golla
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jaya Prakash Golla
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristopher W Krausz
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumen K Manna
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cedric Simillion
- b Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.,c Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Diren Beyoğlu
- c Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Jeffrey R Idle
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,c Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Frank J Gonzalez
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Hasan HF, Abdel-Rafei MK, Galal SM. Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-γ expression and hampering miR-17-5p-activated canonical Wnt-β-catenin signaling. Biochem Cell Biol 2016; 95:400-414. [PMID: 28177765 DOI: 10.1139/bcb-2016-0142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Liver fibrosis is one of the major complications from upper right quadrant radiotherapy. MicroRNA-17-5p (miR-17-5p) is hypothesized to act as a regulator of hepatic stellate cell (HSCs) activation by activation of the canonical Wnt-β-catenin pathway. Diosmin (Dios), a citrus bioflavonoid, is known to possess potent antioxidant, anti-inflammatory, and anti-apoptotic properties. PURPOSE To explore the molecular mechanisms that underlie radiation-induced liver fibrosis, and to evaluate the possible influence of Dios on the miR-17-5p-Wnt-β-catenin signaling axis during fibrogenesis provoked by irradiation (IRR) in rats. Also, the effect of Dios on hepatic peroxisome proliferator activated receptor-γ (PPAR-γ) expression as a regulator for HSC activation was considered. METHODS We administered 100 mg·(kg body mass)-1·day-1 (per oral) of Dios were administered to IRR-exposed rats (overall dose of 12 Gy on 6 fractions of 2 Gy each) for 6 successive weeks. RESULTS Data analysis revealed that Dios treatment mitigated oxidative stress, enhanced antioxidant defenses, alleviated hepatic inflammatory responses, abrogated pro-fibrogenic cytokines, and stimulated PPAR-γ expression. Dios treatment repressed the miR-17-5p activated Wnt-β-catenin signaling induced by IRR. Moreover, Dios treatment restored the normal hepatic architecture and reversed pathological alterations induced by IRR. CONCLUSION We hypothesize that the stimulation of PPAR-γ expression and interference with miR-17-5p activated Wnt-β-catenin signaling mediates the antifibrotic properties of Dios.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Shereen Mohamed Galal
- b Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
10
|
Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. Clin Sci (Lond) 2016; 130:587-99. [PMID: 26772189 DOI: 10.1042/cs20150778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by CYP epoxygenases, and EETs are kidney protective in multiple pathologies. We determined the ability of an EET analogue, EET-A, to mitigate experimental radiation nephropathy. The kidney expression of the EET producing enzyme CYP2C11 was lower in rats that received total body irradiation (TBI rat) compared with non-irradiated control. At 12 weeks after TBI, the rats had higher systolic blood pressure and impaired renal afferent arteriolar function compared with control, and EET-A or captopril mitigated these abnormalities. The TBI rats had 3-fold higher blood urea nitrogen (BUN) compared with control, and EET-A or captopril decreased BUN by 40-60%. The urine albumin/creatinine ratio was increased 94-fold in TBI rats, and EET-A or captopril attenuated that increase by 60-90%. In TBI rats, nephrinuria was elevated 30-fold and EET-A or captopril decreased it by 50-90%. Renal interstitial fibrosis, tubular and glomerular injury were present in the TBI rats, and each was decreased by EET-A or captopril. We further demonstrated elevated renal parenchymal apoptosis in TBI rats, which was mitigated by EET-A or captopril. Additional studies revealed that captopril or EET-A mitigated renal apoptosis by acting on the p53/Fas/FasL (Fas ligand) apoptotic pathway. The present study demonstrates a novel EET analogue-based strategy for mitigation of experimental radiation nephropathy by improving renal afferent arteriolar function and by decreasing renal apoptosis.
Collapse
|
11
|
Jangiam W, Tungjai M, Rithidech KN. Induction of chronic oxidative stress, chronic inflammation and aberrant patterns of DNA methylation in the liver of titanium-exposed CBA/CaJ mice. Int J Radiat Biol 2015; 91:389-98. [PMID: 25565558 DOI: 10.3109/09553002.2015.1001882] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the biological effects of titanium ((48)Ti, one of the important heavy ions found in space) in the liver of exposed-mice. MATERIALS AND METHODS We gave adult male CBA/CaJ mice a whole-body exposure to a total dose of 0, 0.1, 0.25 or 0.5 Gy of (48)Ti ions. The liver was collected at 1 week, 1 month, and 6 months post-irradiation (five mice per treatment-group at each harvest-time). Three biological endpoints were used for evaluating the effects of (48)Ti ions: Oxidative-stress, inflammatory responses, and DNA-methylation (5-methylcytosine and 5-hydroxymethylcytosine). RESULTS Our data clearly demonstrated dose-dependent increases in oxidative stress and inflammatory responses in the liver of exposed mice at all time-points (Analysis of Variance or ANOVA, p < 0.05). Significant dose-dependent increases in the levels of 5-methylcytosine were detected at 1 week and 1 month (ANOVA, p < 0.05). At 6 months post-irradiation, a significant increase in the level of 5-methylcytosine was found only in 0.5-Gy-(48)Ti-ion-exposed mice. In contrast, dose-dependent decreases in 5-hydroxymethylcytosine levels were found in the liver of exposed mice (ANOVA, p < 0.05) at all time-points. CONCLUSIONS Chronic oxidative-stress, chronic inflammation, and persistent aberrant DNA-methylation occurred in the liver of (48)Ti-exposed mice. Hence, exposure to (48)Ti ions in space may pose health risks.
Collapse
Affiliation(s)
- Witawat Jangiam
- Pathology Department, Stony Brook University , Stony Brook, NY , USA
| | | | | |
Collapse
|
12
|
Modulation of Radiation Response by the Tetrahydrobiopterin Pathway. Antioxidants (Basel) 2015; 4:68-81. [PMID: 26785338 PMCID: PMC4665563 DOI: 10.3390/antiox4010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the "omics" technologies during the past decade has enabled integration of "data from traditional radiobiology research", with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure.
Collapse
|
13
|
Shin T, Ahn M, Hyun JW, Kim SH, Moon C. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem 2014; 116:669-74. [PMID: 24751171 DOI: 10.1016/j.acthis.2014.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/16/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
Abstract
Radiation has been widely used for cancer therapy in human medicine. However, the side effects of radiation are problematic and can limit its application. Radiation generates reactive oxygen species, leading to cell death via multiple signaling pathways. The blocking of certain signaling cascades using antioxidants represents a compensatory therapy of radiation-induced tissue injury. Although synthetic chemicals have been investigated in recent decades, anti-oxidants from natural resources have been searched for continuously. Among them, phlorotannins from marine algae, including Ecklonia cava, have been shown to protect cells from radiation-induced injury as well as oxidative stress. In the present review, the radioprotective capacity of phlorotannins derived from marine algae and the mechanisms involved are discussed.
Collapse
Affiliation(s)
- Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 690-756, South Korea; Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, South Korea.
| | - Meejung Ahn
- College of Medicine, Jeju National University, Jeju 690-756, South Korea
| | - Jin Won Hyun
- Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, South Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 690-756, South Korea
| | - Sung Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
14
|
Cheema AK, Pathak R, Zandkarimi F, Kaur P, Alkhalil L, Singh R, Zhong X, Ghosh S, Aykin-Burns N, Hauer-Jensen M. Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation. J Proteome Res 2014; 13:3065-74. [PMID: 24824572 PMCID: PMC4053308 DOI: 10.1021/pr500278t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Although radiation-induced tissue-specific
injury is well documented,
the underlying molecular changes resulting in organ dysfunction and
the consequences thereof on overall metabolism and physiology have
not been elucidated. We previously reported the generation and characterization
of a transgenic mouse strain that ubiquitously overexpresses Gfrp
(GTPH-1 feedback regulatory protein) and exhibits higher oxidative
stress, which is a possible result of decreased tetrahydrobiopterin
(BH4) bioavailability. In this study, we report genotype-dependent
changes in the metabolic profiles of liver tissue after exposure to
nonlethal doses of ionizing radiation. Using a combination of untargeted
and targeted quantitative mass spectrometry, we report significant
accumulation of metabolites associated with oxidative stress, as well
as the dysregulation of lipid metabolism in transgenic mice after
radiation exposure. The radiation stress seems to exacerbate lipid
peroxidation and also results in higher expression of genes that facilitate
liver fibrosis, in a manner that is dependent on the genetic background
and post-irradiation time interval. These findings suggest the significance
of Gfrp in regulating redox homeostasis in response to stress induced
by ionizing radiation affecting overall physiology.
Collapse
Affiliation(s)
- Amrita K Cheema
- Departments of Oncology, ‡Biochemistry, Molecular and Cellular Biology, and ∥Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center , Washington DC 20057, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|