1
|
Zarenezhad E, Farjam M, Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Zou F, Wang X, Han X, Rothschild G, Zheng SG, Basu U, Sun J. Expression and Function of Tetraspanins and Their Interacting Partners in B Cells. Front Immunol 2018; 9:1606. [PMID: 30072987 PMCID: PMC6058033 DOI: 10.3389/fimmu.2018.01606] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023] Open
Abstract
Tetraspanins are transmembrane proteins that modulate multiple diverse biological processes, including signal transduction, cell–cell communication, immunoregulation, tumorigenesis, cell adhesion, migration, and growth and differentiation. Here, we provide a systematic review of the involvement of tetraspanins and their partners in the regulation and function of B cells, including mechanisms associated with antigen presentation, antibody production, cytokine secretion, co-stimulator expression, and immunosuppression. Finally, we direct our focus to the signaling mechanisms, evolutionary conservation aspects, expression, and potential therapeutic strategies that could be based on tetraspanins and their interacting partners.
Collapse
Affiliation(s)
- Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xu Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinxin Han
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center at Penn State University, Pennsylvania, PA, United States.,Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
3
|
Farjam M, Zhang GX, Ciric B, Rostami A. Emerging immunopharmacological targets in multiple sclerosis. J Neurol Sci 2015; 358:22-30. [PMID: 26440421 DOI: 10.1016/j.jns.2015.09.346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Inflammatory demyelination of the central nervous system (CNS) is the hallmark of multiple sclerosis (MS), a chronic debilitating disease that affects more than 2.5 million individuals worldwide. It has been widely accepted, although not proven, that the major pathogenic mechanism of MS involves myelin-reactive T cell activation in the periphery and migration into the CNS, which subsequently triggers an inflammatory cascade that leads to demyelination and axonal damage. Virtually all MS medications now in use target the immune system and prevent tissue damage by modulating neuroinflammatory processes. Although current therapies such as commonly prescribed disease-modifying medications decrease the relapse rate in relapsing-remitting MS (RRMS), the prevention of long-term accumulation of deficits remains a challenge. Medications used for progressive forms of MS also have limited efficacy. The need for therapies that are effective against disease progression continues to drive the search for novel pharmacological targets. In recent years, due to a better understanding of MS immunopathogenesis, new approaches have been introduced that more specifically target autoreactive immune cells and their products, thus increasing specificity and efficacy, while reducing potential side effects such as global immunosuppression. In this review we describe several immunopharmacological targets that are currently being explored for MS therapy.
Collapse
Affiliation(s)
- Mojtaba Farjam
- Non-communicable Diseases Research Center, Department of Medical Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|