1
|
Miller IS, Khan S, Shiels LP, Das S, O' Farrell AC, Connor K, Lafferty A, Moran B, Isella C, Loadman P, Conroy E, Cohrs S, Schibli R, Kerbel RS, Gallagher WM, Marangoni E, Bennett K, O' Connor DP, Dwyer RM, Byrne AT. Implementing subtype-specific pre-clinical models of breast cancer to study pre-treatment aspirin effects. Cancer Med 2022; 11:3820-3836. [PMID: 35434898 PMCID: PMC9582689 DOI: 10.1002/cam4.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Backgorund Prior data suggest pre‐diagnostic aspirin use impacts breast tumour biology and patient outcome. Here, we employed faithful surgical resection models of HER2+ and triple‐negative breast cancer (TNBC), to study outcome and response mechanisms across breast cancer subtypes. Method NOD/SCID mice were implanted with HER2+ MDA‐MB‐231/LN/2‐4/H2N, trastuzumab‐resistant HER2+ HCC1954 or a TNBC patient‐derived xenograft (PDX). A daily low‐dose aspirin regimen commenced until primary tumours reached ~250 mm3 and subsequently resected. MDA‐MB‐231/LN/2‐4/H2N mice were monitored for metastasis utilising imaging. To interrogate the survival benefit of pre‐treatment aspirin, 3 weeks post‐resection, HCC1954/TNBC animals received standard‐of‐care (SOC) chemotherapy for 6 weeks. Primary tumour response to aspirin was interrogated using immunohistochemistry. Results Aspirin delayed time to metastasis in MDA‐MB‐231/LN/2‐4/H2N xenografts and decreased growth of HER2+/TNBC primary tumours. Lymphangiogenic factors and lymph vessels number were decreased in HER2+ tumours. However, no survival benefit was seen in aspirin pre‐treated animals (HCC1954/TNBC) that further received adjuvant SOC, compared with animals treated with SOC alone. In an effort to study mechanisms responsible for the observed reduction in lymphangiogenesis in HER2+ BC we utilised an in vitro co‐culture system of HCC1954 tumour cells and mesenchymal stromal cells (MSC). Aspirin abrogated the secretion of VEGF‐C in MSCs and also decreased the lymph/angiogenic potential of the MSCs and HCC1954 by tubule formation assay. Furthermore, aspirin decreased the secretion of uPA in HCC1954 cells potentially diminishing its metastatic capability. Conclusion Our data employing clinically relevant models demonstrate that aspirin alters breast tumour biology. However, aspirin may not represent a robust chemo‐preventative agent in the HER2+ or TNBC setting.
Collapse
Affiliation(s)
- Ian S Miller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland.,National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland
| | - Sonja Khan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Liam P Shiels
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland
| | - Sudipto Das
- School of Pharmacy and Biomedical Sciences, Royal College of Surgeons in Ireland, St Stepehen's Green, Dublin, Ireland
| | - Alice C O' Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland
| | - Adam Lafferty
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland
| | - Bruce Moran
- UCD School of Bimolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Claudio Isella
- Institute for Cancer Research and Treatment, University of Turin, Turin, Italy
| | - Paul Loadman
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Emer Conroy
- UCD School of Bimolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Robert S Kerbel
- Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - William M Gallagher
- UCD School of Bimolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Elisabetta Marangoni
- Translational Research Department, Institute Curie, PSL Research University, Paris, France
| | - Kathleen Bennett
- Division of Population Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Darran P O' Connor
- School of Pharmacy and Biomedical Sciences, Royal College of Surgeons in Ireland, St Stepehen's Green, Dublin, Ireland
| | - Róisín M Dwyer
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland.,National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, St Stephens Green, Dublin, Ireland.,UCD School of Bimolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Zhang D, Yang J, Ye S, Wang Y, Liu C, Zhang Q, Liu R. Combination of Photothermal Therapy with Anti-Inflammation Therapy Attenuates the Inflammation Tumor Microenvironment and Weakens Immunosuppression for Enhancement Antitumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107071. [PMID: 35128798 DOI: 10.1002/smll.202107071] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Photothermal therapy has gained widespread attention in cancer treatment, although its efficacy is suppressed due to the inflammatory response and immunosuppression, resulting in a discounted therapeutic effect. In this contribution, a high-performance NIR absorption organic small chromophore is developed, which is encapsulated into Pluronic F-127 to fabricate NIR absorption organic nanoparticles (TTM NPs) with excellent photothermal conversion efficiency (51.49%) for photothermal therapy. TTM NPs based photothermal therapy are combined with Aspisol, a kind of nonsteroidal anti-inflammatory drug, to weaken the inflammation and immunosuppression tumor microenvironment and enhance the antitumor effect. The results prove that the combination therapy realizes effective thermal elimination of primary tumors, inhibition of distant tumors, and suppression of tumor metastasis. The data show that combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation and maturation, reverse the immunosuppression, facilitate T cell infiltration, and restore antitumor cytotoxic T lymphocyte activity. This study provides a paradigm to extend the development of photothermal therapy.
Collapse
Affiliation(s)
- Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yutong Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuang Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
Xie S, Wang Y, Huang Y, Yang B. Mechanisms of the antiangiogenic effects of aspirin in cancer. Eur J Pharmacol 2021; 898:173989. [PMID: 33657423 DOI: 10.1016/j.ejphar.2021.173989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Aspirin is an old drug extracted from willow bark and is widely used for the prevention and treatment of cardiovascular diseases. Accumulating evidence has shown that aspirin use may significantly reduce the angiogenesis of cancer; however, the mechanism of the association between angiogenesis and aspirin is complex. Although COX-1 is widely known as a target of aspirin, several studies reveal other antiangiogenic targets of aspirin, such as angiotensin II, glucose transporter 1, heparanase, and matrix metalloproteinase. In addition, some data indicates that aspirin may produce antiangiogenic effects after acting in different cell types, such as endothelial cells, platelets, pericytes, and macrophages. In this review, we concentrate on research regarding the antiangiogenic effects of aspirin in cancer, and we discuss the molecular mechanisms of aspirin and its metabolites. Moreover, we discuss some mechanisms through which aspirin treatment may normalize existing blood vessels, including preventing the disintegration of endothelial adheres junctions and the recruitment of pericytes. We also address the antiangiogenic effects and the underlying mechanisms of aspirin derivatives, which are aimed at improving safety and efficacy.
Collapse
Affiliation(s)
- Shiyuan Xie
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Youqiong Wang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Yixuan Huang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
4
|
Lv H, Liu B, Qin Y. Isosorbide mononitrate promotes angiogenesis in embryonic development of zebrafish. Genet Mol Biol 2020; 43:20190233. [PMID: 32706844 PMCID: PMC7380327 DOI: 10.1590/1678-4685-gmb-2019-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Coronary heart disease (CHD) is a leading cause of death worldwide, and
angiogenesis plays important roles in CHD. Thus, in the present study, the
angiogenic efficacy of four common cardiovascular medicines (aspirin,
pravastatin, metoprolol and isosorbide mononitrate (ISMN)) was determined by the
number and length of zebrafish intersegmental vessels (ISVs) after immersing
zebrafish embryos in different medicines. Results showed that ISMN significantly
increased the length and number of ISVs. ISMN is a long-acting nitrate ester
drug. It has been used as a vasodilator to dilate arteries and veins to reduce
the cardiac preload and postload. However, the effect of ISMN on angiogenesis
remains unclear. Thus, by in vitro experiments, the angiogenic mechanism of ISMN
was evaluated through detecting the viability and proliferation of human
umbilical vein endothelial cells (HUVECs) and the expression of
angiogenesis-related genes and miRNAs. Results indicated that ISMN could
increase the viability and proliferation of HUVECs by decreasing apoptosis, and
elevated the expressions of vedf, kdrl,
pdgfr in zebrafish embryos. Furthermore, the expressions of
miR-126, miR-130a and miR-210 were also regulated in ISMN-treated HUVECs. In
conclusion, ISMN could promote angiogenesis in zebrafish embryos and HUVECs,
implying ISMN may be a potential therapeutic in treating angiogenesis-related
diseases.
Collapse
Affiliation(s)
- Hui Lv
- The Second Affiliated Hospital of ShanXi Medical University, Department of Cardiovascular Disease, Taiyuan, Shanxi, 030001, China
| | - Bo Liu
- Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Department of Cardiovascular Disease, Shanghai 200092, China
| | - Yongwen Qin
- The Second Military Medical University, Department of Cardiovascular Disease , Shanghai 200433, China
| |
Collapse
|
5
|
Abstract
The tumor microenvironment (TME) is a complex ecosystem, including blood vessels,
immune cells, fibroblasts, extracellular matrix, cytokines, hormones, and so on.
The TME differs from the normal tissue environment (NTE) in many aspects, such
as tissue architecture, chronic inflammation, level of oxygen and pH,
nutritional state of the cells, as well as tissue firmness. The NTE can inhibit
the growth of cancer at the early tumorigenesis phase, whereas the TME promotes
the growth of cancer in general, although it may have some anticancer effects.
In particular, the TME plays a crucial role in the generation and maintenance of
cancer stem cells, which lie at the root of cancer growth. Therefore,
normalization of the TME to the NTE may inhibit cancer growth or improve cancer
therapeutic efficiency. This review focuses on the recent emerging approaches
for this normalization and the action mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- 1 Southeast University, Nanjing, China
| | - Peng Gao
- 2 Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
6
|
Kanikarla-Marie P, Lam M, Sorokin AV, Overman MJ, Kopetz S, Menter DG. Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy. Front Oncol 2018; 8:107. [PMID: 29732316 PMCID: PMC5919962 DOI: 10.3389/fonc.2018.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
The role of platelets in cancer progression has been well recognized in the field of cancer biology. Emerging studies are elaborating further the additional roles and added extent that platelets play in promoting tumorigenesis. Platelets release factors that support tumor growth and also form heterotypic aggregates with tumor cells, which can provide an immune-evasive advantage. Their most critical role may be the inhibition of immune cell function that can negatively impact the body’s ability in preventing tumor establishment and growth. This review summarizes the importance of platelets in tumor progression, therapeutic response, survival, and finally the notion of immunotherapy modulation being likely to benefit from the inclusion of platelet inhibitors.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V Sorokin
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Kanikarla-Marie P, Lam M, Menter DG, Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev 2017; 36:235-248. [DOI: 10.1007/s10555-017-9681-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Pantziarka P, Bouche G, Sukhatme V, Meheus L, Rooman I, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-Propranolol as an anti-cancer agent. Ecancermedicalscience 2016; 10:680. [PMID: 27899953 PMCID: PMC5102691 DOI: 10.3332/ecancer.2016.680] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Ilse Rooman
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; Oncology Research Centre, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc, Newton MA 02459, USA; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L. Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim Biophys Acta Rev Cancer 2016; 1866:163-176. [PMID: 27567928 DOI: 10.1016/j.bbcan.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with dismal prognosis. Recently, aspirin has been found to be an effective chemopreventive agent for many solid tumors. However, the function of aspirin use in pancreatic cancer largely remains unknown. We herein argued that aspirin could also lower the risk of pancreatic cancer. Importantly, aspirin assumes pleiotropic effects by targeting multiple molecules. It could further target the unique tumor biology of pancreatic cancer and modify the cancer microenvironment, thus showing remarkable therapeutic potentials. Besides, aspirin could reverse the chemoradiation resistance by repressing tumor repopulation and exert synergistic potentials with metformin on pancreatic cancer chemoprevention. Moreover, aspirin secondarily benefits pancreatic cancer patients through modestly reducing cancer pain and the risk of venous thromboembolism. Furthermore, new aspirin derivatives and delivery systems might help to improve risk-to-benefit ratio. In brief, aspirin is a promising chemopreventive agent and exerts significant therapeutic potentials in pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Juan-Juan Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
10
|
Vitale P, Panella A, Scilimati A, Perrone MG. COX-1 Inhibitors: Beyond Structure Toward Therapy. Med Res Rev 2016; 36:641-71. [DOI: 10.1002/med.21389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/21/2016] [Accepted: 02/15/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Paola Vitale
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Andrea Panella
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| |
Collapse
|
11
|
Dai SX, Li WX, Li GH, Huang JF. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. PeerJ 2016; 4:e1791. [PMID: 26989626 PMCID: PMC4793309 DOI: 10.7717/peerj.1791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view.
Collapse
Affiliation(s)
- Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China
- Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, Yunnan, China
| |
Collapse
|
12
|
Pantziarka P, Sukhatme V, Bouche G, Meheus L, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience 2016; 10:610. [PMID: 26823679 PMCID: PMC4720497 DOI: 10.3332/ecancer.2016.610] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
- The George Pantziarka TP53 Trust, London, UK
| | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc; Newton MA 02459, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
13
|
Abstract
The incidence of esophageal adenocarcinoma (EAC), a debilitating and highly lethal malignancy, has risen dramatically over the past 40 years in the United States and other Western countries. To reverse this trend, EAC prevention and early detection efforts by clinicians, academic researchers and endoscope manufacturers have targeted Barrett's esophagus (BE), the widely accepted EAC precursor lesion. Data from surgical, endoscopic and pre-clinical investigations strongly support the malignant potential of BE. For patients with BE, the risk of developing EAC has been estimated at 11- to 125-fold greater than that of the individual at average risk. Nevertheless, screening for BE in symptomatic patients (ie, with symptoms of reflux) and surveillance in patients diagnosed with BE have not had a substantial impact on the incidence, morbidity or mortality of EAC; the overwhelming majority of EAC patients are diagnosed without a pre-operative diagnosis of BE. This article will discuss the current state of the science of esophageal adenocarcinoma prevention, including ideas about carcinogenesis and its underlying genomic and molecular level mechanisms, and suggest strategies for a systems approach to targeted preventive management.
Collapse
Affiliation(s)
- Ellen Richmond
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA.
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|