1
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
2
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
3
|
Quintero D, Carrafa J, Vincent L, Bermudes D. EGFR-targeted Chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol Bioeng 2016; 113:2698-2711. [PMID: 27260220 PMCID: PMC5083144 DOI: 10.1002/bit.26026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 02/06/2023]
Abstract
Tumor-targeted Salmonella VNP20009 preferentially replicate within tumor tissue and partially suppress tumor growth in murine tumor models. These Salmonella have the ability to locally induce apoptosis when they are in direct contact with cancer cells but they lack significant bystander killing, which may correlate with their overall lack of antitumor activity in human clinical studies. In order to compensate for this deficiency without enhancing overall toxicity, we engineered the bacteria to express epidermal growth factor receptor (EGFR)-targeted cytotoxic proteins that are released into the extracellular milieu. In this study, we demonstrate the ability of the Salmonella strain VNP20009 to produce three different forms of the Pseudomonas exotoxin A (ToxA) chimeric with a tumor growth factor alpha (TGFα) which results in its producing culture supernatants that are cytotoxic and induce apoptosis in EGFR positive cancer cells as measured by the tetrazolium dye reduction, and Rhodamine 123 and JC-10 mitochondrial depolarization assays. In addition, exchange of the ToxA REDLK endoplasmic reticulum retention signal for KDEL and co-expression of the ColE3 lysis protein resulted in an overall increased cytotoxicity compared to the wild type toxin. This approach has the potential to significantly enhance the antitumor activity of VNP20009 while maintaining its previously established safety profile. Biotechnol. Bioeng. 2016;113: 2698-2711. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Quintero
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303
- Interdisciplinary Research Institute for the Sciences (IRIS), California State University Northridge, Northridge, California, 91330-8303
| | - Jamie Carrafa
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303
| | - Lena Vincent
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303
| | - David Bermudes
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303.
- Interdisciplinary Research Institute for the Sciences (IRIS), California State University Northridge, Northridge, California, 91330-8303.
| |
Collapse
|