1
|
Lin MH, Lin JF, Yu MC, Wu SN, Wu CL, Cho HY. Characterization in Potent Modulation on Voltage-Gated Na + Current Exerted by Deltamethrin, a Pyrethroid Insecticide. Int J Mol Sci 2022; 23:ijms232314733. [PMID: 36499059 PMCID: PMC9737322 DOI: 10.3390/ijms232314733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Deltamethrin (DLT) is a type-II pyrethroid ester insecticide used in agricultural and domestic applications as well as in public health. However, transmembrane ionic channels perturbed by this compound remain largely unclear, although the agent is thought to alter the gating characteristics of voltage-gated Na+ (NaV) channel current. In this study, we reappraised whether and how it and other related compounds can make any further modifications on voltage-gated Na+ current (INa) in pituitary tumor (GH3) cells. Cell exposure to DLT produced a differential and dose-dependent stimulation of peak (transient, INa(T)) or sustained (late, INa(L)) INa; consequently, the EC50 value required for DLT-stimulated INa(T) or INa(L) was determined to be 11.2 or 2.5 μM, respectively. However, neither the fast nor slow component in the inactivation time constant of INa(T) activated by short depolarizing pulse was changed with the DLT presence; conversely, tefluthrin (Tef), a type-I pyrethroid insecticide, can accentuate INa with a slowing in inactivation time course of the current. The INa(L) augmented by DLT was attenuated by further application of either dapagliflozin (Dapa) or amiloride, but not by chlorotoxin. During pulse train (PT) stimulation, with the Tef or DLT presence, the cumulative inhibition of INa(T) became slowed; moreover, following PT stimuli, a large tail current with a slowly recovering process was observed. Alternatively, during rapid depolarizing pulse, the amplitude of INa(L) and tail INa (INa(Tail)) for each depolarizing pulse became progressively increased by adding DLT, not by Tef. The recovery time constant following PT stimulation with continued presence of Tef or DLT was shortened by further addition of Dapa. The voltage-dependent hysteresis (Hys(V)) of persistent INa was differentially augmented by Tef or DLT. Taken together, the magnitude, gating, frequency dependence, as well as Hys(V) behavior of INa exerted by the presence of DLT or Tef might exert a synergistic impact on varying functional activities of excitable cells in culture or in vivo.
Collapse
Affiliation(s)
- Mao-Hsun Lin
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan
| | - Jen-Feng Lin
- Department of Emergency Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 701, Taiwan
- Department of Post-Baccalaureate Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: 886-6-2362780
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| |
Collapse
|
2
|
Tanhaian A, Mohammadi E, Vakili-Ghartavol R, Saberi MR, Mirzayi M, Jaafari MR. In silico and In vitro Investigation of a Likely Pathway for Anti-Cancerous Effect of Thrombocidin-1 as a Novel Anticancer Peptide. Protein Pept Lett 2021; 27:751-762. [PMID: 32072885 DOI: 10.2174/0929866527666200219115129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Antimicrobial and antifungal activities of Thrombocidin-1 (TC-1) is shown previously, however,.the anti-cancerous feature of this peptide is still uncovered. OBJECTIVE The objective is to evaluate anti-cancerous feature of recombinant TC-1. METHODS In this study, based on the significant similarity of rTC-1 and IL-8 in case of coding sequence, tertiary structure, and also docking and molecular dynamic simulation (MD) results with CXCR1, a receptor which has positive correlation with different cancers, a likely pathway for anticancerous effect of rTC-1 was proposed. In addition, the coding sequence of TC-1+6xhistidine (rTC-1) was inserted into the pET22b(+) vector and cloned and expressed by E. coli BL21 and finally purified through nickel affinity column. Afterward, the retrieved rTC-1 was used in MTT assay against mouse colon adenocarcinoma, hepatocellular carcinoma, chondrosarcoma, mouse melanoma, and breast adenocarcinoma cell lines to investigate its probable anticancer application. RESULTS Docking and MD simulation results showed that rTC-1 and IL-8 share almost the same residues in the interaction with CXCR1 receptor. Besides, the stability of the rTC-1_CXCR11-38 complex was shown during 100ns MD simulation. In addition, the successful expression and purification of rTC-1 depict an 8kD peptide. The IC50 results of MTT assay revealed that rTC-1 has cytotoxic effect on C26-A and SW1353 cancerous cell lines. CONCLUSION Therefore, apart from probable anti-cancerous effect of rTC-1 on C26-A and SW1353 cell lines, this peptide may be able to mimic the anti-cancerous pathway of IL-8.
Collapse
Affiliation(s)
- Abbas Tanhaian
- School of Medicine, Shahrood University of Medical Science, Shahrood, Iran
| | - Elyas Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Mirzayi
- School of Medicine, Shahrood University of Medical Science, Shahrood, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Bhimaneni SP, Kumar A. Abscisic Acid, a Plant Hormone, Could be a Promising Candidate as an Anti-Japanese Encephalitis Virus (JEV) Agent. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2211352518666200108092127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Japanese encephalitis virus (JEV) is an arthropod-borne flavivirus that belongs to the Flaviviridae
family affecting millions of people worldwide. There is no specific drug approved for the
treatment of this infection and also available vaccines are not effective against all the clinical isolates.
Thus, the exploration of novel mechanistic pathways of existing molecules may help to develop more
effective anti-JEV agents. Abscisic acid is a naturally occurring phytohormone released particularly
in stress conditions, which controls leaf abscission. Recent studies have shown that the abscisic acid
has the potential to inhibit the virus by inhibiting protein disulfide isomerase enzyme, which is important
for the formation of viral proteins. Apart from this, abscisic acid could also reduce the neuroinflammation
(a major hallmark of JEV infection) through the stimulation of PPAR gamma. Thus,
abscisic acid thereof could have the potential to develop as an anti-JEV agent.
Collapse
Affiliation(s)
- Sai Priyanka Bhimaneni
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Raebareli, Lucknow (U.P.), India
| | - Anoop Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow (U.P.), India
| |
Collapse
|
4
|
Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan Z, Wang X, Martínez MA. Deltamethrin toxicity: A review of oxidative stress and metabolism. ENVIRONMENTAL RESEARCH 2019; 170:260-281. [PMID: 30599291 DOI: 10.1016/j.envres.2018.12.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Deltamethrin is widely used worldwide due to its valuable insecticidal activity against pests and parasites. Increasing evidence has shown that deltamethrin causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. For the first time, this review systematically summarizes the deltamethrin toxicity mechanism from the perspective of oxidative stress, including deltamethrin-mediated oxidative damage, antioxidant status, oxidative signaling pathways and modulatory effects of antagonists, synergists and placebos on oxidative stress. Further, deltamethrin metabolism, including metabolites, metabolic enzymes and pathways and deltamethrin metabolite toxicity are discussed. This review will shed new light on deltamethrin toxicity mechanisms and provide effective strategies to ensure pest control and prevention of human and animal poisoning.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaqi Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Subramanian B, Agarwal T, Basak P, Maiti TK, Guha SK. RISUG ® based improved intrauterine contraceptive device (IIUCD) could impart protective effects against development of endometrial cancer. Med Hypotheses 2019; 124:67-71. [PMID: 30798920 DOI: 10.1016/j.mehy.2019.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/11/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
Intrauterine Contraceptive Devices with multifaceted application potential is a need of an hour. Although, copper-based IUDs exert an effective contraceptive as well as anticancer effects in a long-term basis, but also results in multiple complications. In this regard, RISUG® a polymer based contraceptive device has been introduced as a suitable alternative. However, its potential to impart protective effects against development of endometrial cancer still remains unexplored. This article presents the hypothesis on this unexplored domain and provides scientific facts to support the hypothesis. The mechanism of anticancerous activity is hypothesized that RISUG® involves its lipid membrane destabilizing activity. This activity is modulated by both, the cellular microenvironment and lipid bilayer composition. Acidic environment along with the significantly higher fluidic nature of lipid bilayer of the cancerous cells make them more prone to lipid solubilisation effect of RISUG®. We here present an in-depth insight into the factors that would favour faster solubilisation of cancer cell membrane, thereby exerting an anticancer effect.
Collapse
Affiliation(s)
- Bhuvaneshwaran Subramanian
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur 721302, India; Jadavpur University, School of Bio-Science and Engineering, Kolkata, West Bengal 700098, India
| | - Tarun Agarwal
- Indian Institute of Technology, Department of Biotechnology, Kharagpur 721302, India
| | - Piyali Basak
- Jadavpur University, School of Bio-Science and Engineering, Kolkata, West Bengal 700098, India.
| | - Tapas Kumar Maiti
- Indian Institute of Technology, Department of Biotechnology, Kharagpur 721302, India
| | - Sujoy K Guha
- Indian Institute of Technology, School of Medical Science and Technology, Kharagpur 721302, India.
| |
Collapse
|
6
|
Sharma N, Banerjee S, Mazumder PM. Evaluation of the mechanism of anticancer activity of deltamethrin in Jurkat-J6 cell line. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:98-103. [PMID: 30033023 DOI: 10.1016/j.pestbp.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Deltamethrin (DLM) is an α-cyano type-II synthetic pyrethroid compound which is extensively used in different agricultural and home pest control. The advantages of pyrethroids over other insecticides are that they are relatively non-toxic to birds and mammals and show high efficacy at relatively lower concentrations. DLM may have dual characteristics i.e. at low molar-concentration, it is nontoxic to normal healthy cells but can induce apoptotic cell death in cancerous cells. There is no reported work based on such hypothesis. Thus, this study has been designed to explore the anticancer property of DLM and the mechanism behind the apoptotic cell death by DLM in cancer cell line (Jurkat J6). Molecular docking study indicates that DLM has the greater binding affinity towards MCL-1 receptor. MTT assay has revealed some significant loss in the viability of cancerous cells by DLM. Further estimation of ROS and GSH have shown the significant oxidative stress induced by DLM in concentration-time dependent manner. DLM has also increased the caspase-3 activity and the apoptotic cells significantly while a decrease in interleukin-2 level has also been observed. The pre-treatment with thiol antioxidant and caspase inhibitor has confirmed the role of oxidative stress and the possibility of other pathways. These observations reveal that DLM may act as anticancer agent at lower concentrations (0.1-1 μM), though the further detailed investigation is warranted.
Collapse
Affiliation(s)
- Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Sayantan Banerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|