1
|
Paunkov A, Strasser D, Huber P, Leitsch D. Roles of efflux pumps and nitroreductases in metronidazole-resistant Trichomonas vaginalis. Parasitol Res 2025; 124:21. [PMID: 39937247 DOI: 10.1007/s00436-025-08463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Trichomonas vaginalis infections significantly impact public health and are associated with increased likelihood of HIV infection, prostate cancer, and pregnancy complications. Current treatment relies almost exclusively on 5-nitroimidazoles, particularly metronidazole, raising concerns about drug resistance and treatment efficacy. This study is aimed at evaluating the effectiveness of metronidazole and tinidazole on metronidazole-resistant strains of T. vaginalis and at determining whether efflux pump inhibitors could reverse metronidazole resistance. Additionally, the roles of nitroreductases in metronidazole resistance were also studied. Metronidazole and tinidazole were tested on both metronidazole-sensitive and -resistant T. vaginalis strains. A checkerboard assay was conducted to assess the potential synergy between metronidazole or tinidazole and efflux pump inhibitors. Nitroreductase activity and ferric iron reduction assays were employed to study the functions of nitroreductases. Tinidazole demonstrated better effectiveness against metronidazole-resistant strains compared to metronidazole, with lower minimal lethal concentration levels. However, the tested efflux pump inhibitors did not significantly enhance the efficacy of metronidazole or tinidazole. Pyrimethamine showed some activity but did not improve the efficacy of the 5-nitroimidazoles in combination. Investigations into the role of nitroreductases and other enzymes in metronidazole resistance revealed no clear downregulation trend in resistant strains. Notably, nitroreductase 8 was capable of reducing ferric iron. While tinidazole remains a viable alternative for treating metronidazole-resistant T. vaginalis, efflux pump inhibitors do not effectively reverse resistance. The identification of nitroreductase's 8 iron-reducing activity suggests its involvement in metronidazole resistance mechanisms. This finding highlights the need for continued research to develop new treatment strategies and improve the management of trichomoniasis, ultimately reducing its public health burden.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Doris Strasser
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Philipp Huber
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
2
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
3
|
Dendritic cells activated by cimetidine induce Th1/Th17 polarization in vitro and in vivo. Toxicol In Vitro 2022; 83:105395. [DOI: 10.1016/j.tiv.2022.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
|
4
|
Ørbæk M, Gynthersen RMM, Mens H, Stenør C, Wiese L, Brandt C, Ostrowski SR, Nielsen SD, Lebech AM. Stimulated Immune Response by TruCulture ® Whole Blood Assay in Patients With European Lyme Neuroborreliosis: A Prospective Cohort Study. Front Cell Infect Microbiol 2021; 11:666037. [PMID: 34041044 PMCID: PMC8141554 DOI: 10.3389/fcimb.2021.666037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Borrelia burgdorferi sensu lato complex (B. burgdorferi) can cause a variety of clinical manifestations including Lyme neuroborreliosis. Following the tick-borne transmission, B. burgdorferi initially evade immune responses, later symptomatic infection is associated with occurrence of specific antibody responses. We hypothesized that B. burgdorferi induce immune hyporesponsiveness or immune suppression and aimed to investigate patients with Lyme neuroborreliosis ability to respond to immune stimulation. Methods An observational cohort study investigating the stimulated immune response by standardized whole blood assay (TruCulture®) in adult patients with Lyme neuroborreliosis included at time of diagnosis from 01.09.2018-31.07.2020. Reference intervals were based on a 5-95% range of cytokine concentrations from healthy individuals (n = 32). Patients with Lyme neuroborreliosis and references were compared using Mann-Whitney U test. Heatmaps of cytokine responses were generated using the webtool Clustvis. Results In total, 22 patients with Lyme neuroborreliosis (19 definite, 3 probable) were included. In the unstimulated samples, the concentrations of cytokines in patients with Lyme neuroborreliosis were comparable with references, except interferon (IFN)-α, interleukin (IL)-17A, IL-1β and IL-8, which were all significantly below the references. Patients with Lyme neuroborreliosis had similar concentrations of most cytokines in all stimulations compared with references. IFN-α, IFN-γ, IL-12 and IL-17A were lower than references in multiple stimulations. Conclusion In this exploratory cohort study, we found lower or similar concentrations of circulating cytokines in blood from patients with Lyme neuroborreliosis at time of diagnosis compared with references. The stimulated cytokine release in blood from patients with Lyme neuroborreliosis was in general slightly lower than in the references. Specific patterns of low IL-12 and IFN-γ indicated low Th1-response and low concentrations of IL-17A did not support a strong Th17 response. Our results suggest that patients with Lyme neuroborreliosis elicit a slightly suppressed or impaired immune response for the investigated stimulations, however, whether the response normalizes remains unanswered.
Collapse
Affiliation(s)
- Mathilde Ørbæk
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Stenør
- Department of Neurology, Herlev Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lothar Wiese
- Department of Infectious Diseases, Sjællands University Hospital, Roskilde, Denmark
| | - Christian Brandt
- Department of Infectious Diseases, Sjællands University Hospital, Roskilde, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Pothineni VR, Potula HHSK, Ambati A, Mallajosyula VVA, Sridharan B, Inayathullah M, Ahmed MS, Rajadas J. Azlocillin can be the potential drug candidate against drug-tolerant Borrelia burgdorferi sensu stricto JLB31. Sci Rep 2020; 10:3798. [PMID: 32123189 PMCID: PMC7052277 DOI: 10.1038/s41598-020-59600-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
Lyme disease is one of most common vector-borne diseases, reporting more than 300,000 cases annually in the United States. Treating Lyme disease during its initial stages with traditional tetracycline antibiotics is effective. However, 10-20% of patients treated with antibiotic therapy still shows prolonged symptoms of fatigue, musculoskeletal pain, and perceived cognitive impairment. When these symptoms persists for more than 6 months to years after completing conventional antibiotics treatment are called post-treatment Lyme disease syndrome (PTLDS). Though the exact reason for the prolongation of post treatment symptoms are not known, the growing evidence from recent studies suggests it might be due to the existence of drug-tolerant persisters. In order to identify effective drug molecules that kill drug-tolerant borrelia we have tested two antibiotics, azlocillin and cefotaxime that were identified by us earlier. The in vitro efficacy studies of azlocillin and cefotaxime on drug-tolerant persisters were done by semisolid plating method. The results obtained were compared with one of the currently prescribed antibiotic doxycycline. We found that azlocillin completely kills late log phase and 7-10 days old stationary phase B. burgdorferi. Our results also demonstrate that azlocillin and cefotaxime can effectively kill in vitro doxycycline-tolerant B. burgdorferi. Moreover, the combination drug treatment of azlocillin and cefotaxime effectively killed doxycycline-tolerant B. burgdorferi. Furthermore, when tested in vivo, azlocillin has shown good efficacy against B. burgdorferi in mice model. These seminal findings strongly suggests that azlocillin can be effective in treating B. burgdorferi sensu stricto JLB31 infection and furthermore in depth research is necessary to evaluate its potential use for Lyme disease therapy.
Collapse
Affiliation(s)
- Venkata Raveendra Pothineni
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Hari-Hara S K Potula
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Aditya Ambati
- Center for sleep sciences and medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, California, 94304, USA
| | | | - Brindha Sridharan
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, 600 034, Tamil Nadu, India
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Mohamed Sohail Ahmed
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Palo Alto, California, 94304, USA.
- Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
6
|
Jafarzadeh A, Nemati M, Khorramdelazad H, Hassan ZM. Immunomodulatory properties of cimetidine: Its therapeutic potentials for treatment of immune-related diseases. Int Immunopharmacol 2019; 70:156-166. [PMID: 30802678 DOI: 10.1016/j.intimp.2019.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Histamine exerts potent modulatory impacts on the cells of innate- [including neutrophils, monocytes, macrophages, dendritic cells (DCs), natural killer (NK) cells and NKT cells] and adaptive immunity (such as Th1-, Th2-, Th17-, regulatory T-, CD8+ cytotoxic T cells, and B cells) through binding to histamine receptor 2 (H2R). Cimetidine, as an H2R antagonist, reverses the histamine-mediated immunosuppression, as it has powerful stimulatory effects on the effector functions of neutrophils, monocytes, macrophages, DCs, NK cells, NKT cells, Th1-, Th2-, Th17-, and CD8+ cytotoxic T cells. However, cimetidine reduces the regulatory/suppressor T cell-mediated immunosuppression. Experimentally, cimetidine potentiate some immunologic activities in vitro and in vivo. The therapeutic potentials of cimetidine as an immunomodulatory agent were also investigated in a number of human diseases (such as cancers, viral warts, allergic disorders, burn, and bone resorption) and vaccination. This review aimed to provide a concise summary regarding the impacts of cimetidine on the immune system and highlight the cellular mechanisms of action and the immunomodulatory effects of this drug in various diseases to give novel insights regarding the therapeutic potentials of this drug for treatment of immune-related disorders. The review encourages more investigations to consider the immunomodulatory characteristic of cimetidine for managing of immune-related disorders.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossain Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
7
|
Quintero GC. Review about gabapentin misuse, interactions, contraindications and side effects. J Exp Pharmacol 2017; 9:13-21. [PMID: 28223849 PMCID: PMC5308580 DOI: 10.2147/jep.s124391] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The current work is targeted to review the risks of gabapentin misuse, its potential interactions with other drugs, side effects and use contraindications. This review consists of a total of 99 biographical references (from the year 1983 to 2016). A publication search of PubMed was performed from January 1983 to December 2016. It included animal studies, clinical studies, case studies and reviews related to gabapentin misuse, potential interactions, side effects and use contraindications. The search terms were gabapentin, anticonvulsant and antiepileptic. In general, it seems that gabapentin has risks of being misused based on the increased level of prescriptions, related fatalities, recreational misuse and higher doses of self-administration. The main reasons for gabapentin misuse are as follows: getting high, alleviating opioid withdrawal symptoms and potentiating methadone effects. Some of the main substances that interact with gabapentin are morphine, caffeine, losartan, ethacrynic acid, phenytoin, mefloquine and magnesium oxide. Some of the side effects caused by gabapentin are teratogenicity, hypoventilation, respiratory failure and myopathy. Finally, reports in general contraindicate the use of gabapentin in conditions such as myasthenia gravis and myoclonus.
Collapse
|