1
|
Zhang T, Wang X, Li W, Wang H, Yan L, Zhao L, Zhang X, Wang N, An W, Liu T, Fan W, Zhang B. Clostridium perfringens α toxin damages the immune function, antioxidant capacity and intestinal health and induces PLCγ1/AMPK/mTOR pathway-mediated autophagy in broiler chickens. Heliyon 2024; 10:e26114. [PMID: 38420466 PMCID: PMC10900427 DOI: 10.1016/j.heliyon.2024.e26114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Clostridium perfringens α toxin is generated by all types of C. perfringens and is closely related to necrotic enteritis in poultry. This study was conducted to investigate the effects of α toxin on immune function, antioxidant capacity, intestinal health and the underlying mechanisms in broiler chickens. A total of 144 twenty-day-old broiler chickens were randomly assigned to four treatments. On d 21, the birds were intraperitoneally injected with PBS (control group) or α toxin at 0.025, 0.1 or 0.4 U/kg of body weight. Samples were collected at 3 h and 24 h post injection (p.i.). Results showed that α toxin challenge linearly decreased the average daily gain during the 3 days after infection and decreased plasma IgA and IgM levels 3 h p.i. Plasma diamine oxidase and d-lactate levels were linearly elevated by α toxin challenge at 3 h p.i. and 24 h p.i. Alpha toxin challenge linearly decreased plasma and jejunal mucosal catalase, glutathione peroxidase and total superoxide dismutase activities at 3 h p.i. and linearly decreased glutathione peroxidase and total superoxide dismutase activities at 24 h p.i. The ileal villus height to crypt depth ratio decreased linearly with increasing α toxin levels at 3 h p.i. and 24 h p.i. Alpha toxin challenge linearly elevated jejunal IL-1β, IL-6, IL-8 and tumor necrosis factor α mRNA expression at 3 h p.i. Additionally, α toxin challenge linearly reduced the jejunal claudin-1, claudin-3 and zonula occludens 1 mRNA expression at 3 h p.i. and the claudin-3, occludin and zonula occludens 1 mRNA expression at 24 h p.i. What's more, α toxin linearly increased the jejunal PLCγ1, AMPKα1 and ATG5 mRNA expression and linearly decreased the mTOR mRNA expression. In conclusion, C. perfringens α toxin challenge decreased body weight gain, impaired immune function, antioxidant capacity and intestinal health, and induced PLCγ1/AMPK/mTOR pathway-mediated autophagy. The recommended intraperitoneal injection dose for moderate injury was 0.1 U/kg of body weight and the recommended sampling time was 3 h p.i. in broiler chickens.
Collapse
Affiliation(s)
- Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, 266114, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, 266000, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wendong An
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tongyue Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenlei Fan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
2
|
Polyphenol Extracts from Grape Seeds and Apple Can Reactivate Latent HIV-1 Transcription through Promoting P-TEFb Release from 7SK snRNP. DISEASE MARKERS 2022; 2022:6055347. [PMID: 35178129 PMCID: PMC8843978 DOI: 10.1155/2022/6055347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
The principal barrier for the eradication of HIV/AIDS is the virus latency. One of the effective strategies so called “shock and kill” is to use latency-reversing agents (LRAs) to activate the latent HIV reservoirs and then combine them with the highly active antiretroviral therapy (HAART) to eradicate the virus. However, most of the current LRAs are too toxic; therefore, they have not been used clinically. Our preliminary data indicated that polyphenols from grape seeds can activate HIV in latently infected Jurkat T cells. Owing to a lot of food containing polyphenols and based on a reasoning whether all of these kinds of polyphenols contain the latency-reversing function, in this study, we screened 22 fruits/vegetables to see whether polyphenols from these can reactivate latent HIV-1 transcription. We finally proved that the polyphenols from grape seeds, apple, pomegranate, and bilberry can reactivate latent HIV-1 transcription. The activation of which can be detected on the level of protein and mRNA. The activation of which is in a dose- and time-dependent manner, while the activated polyphenol extracts have the effects to stimulate Tat-independent HIV-1 transcription. The mechanism shows that polyphenol extracts from grape seeds and apple can stimulate P-TEFb's release from 7SK snRNP to induce HIV gene transcription. These results indicate that using a few food of high-content polyphenols as latent activators and combining HARRT may be of great use for the treatment of HIV/AIDS in the future.
Collapse
|
3
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
4
|
Curcio MF, Batista WL, Castro ED, Strumillo ST, Ogata FT, Alkmim W, Brunialti MKC, Salomão R, Turcato G, Diaz RS, Monteiro HP, Janini LMR. Nitric oxide stimulates a PKC-Src-Akt signaling axis which increases human immunodeficiency virus type 1 replication in human T lymphocytes. Nitric Oxide 2019; 93:78-89. [PMID: 31539562 DOI: 10.1016/j.niox.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.
Collapse
Affiliation(s)
- Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Eloísa D Castro
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Scheilla T Strumillo
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Fernando T Ogata
- Structural and Functional Ecology of Ecosystems, Universidade Paulista, Sorocaba, Brazil
| | - Wagner Alkmim
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milena K C Brunialti
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gilberto Turcato
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo S Diaz
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Luiz Mário R Janini
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019; 124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
The neural correlates of consciousness and the mechanisms by which general anesthesia (GA) modulate such correlates to induce loss of consciousness (LOC) has been described as one of the biggest mysteries of modern medicine. Several cellular targets and neural circuits have been identified that play a critical role in LOC induced by GA, including the GABAA receptor and ascending arousal nuclei located in the basal forebrain, hypothalamus, and brain stem. General anesthetics (GAs) including propofol and inhalational agents induce LOC in part by potentiating chloride influx through the GABAA receptor, leading to neural inhibition and LOC. Interestingly, nearly all GAs used clinically may also induce paradoxical excitation, a phenomenon in which GAs promote neuronal excitation at low doses before inducing unconsciousness. Additionally, emergence from GA, a passive process that occurs after anesthetic removal, is associated with lower anesthetic concentrations in the brain compared to doses associated with induction of GA. AMPK, an evolutionarily conserved kinase activated by cellular stress (e.g. increases in calcium [Ca2+] and/or reactive oxygen species [ROS], etc.) increases lifespan and healthspan in several model organisms. AMPK is located throughout the mammalian brain, including in neurons of the thalamus, hypothalamus, and striatum as well as in pyramidal neurons in the hippocampus and cortex. Increases in ROS and Ca2+ play critical roles in neuronal excitation and glutamate, the primary excitatory neurotransmitter in the human brain, activates AMPK in cortical neurons. Nearly every neurotransmitter released from ascending arousal circuits that promote wakefulness, arousal, and consciousness activates AMPK, including acetylcholine, histamine, orexin-A, dopamine, and norepinephrine. Several GAs that are commonly used to induce LOC in human patients also activate AMPK (e.g. propofol, sevoflurane, isoflurane, dexmedetomidine, ketamine, midazolam). Various compounds that accelerate emergence from anesthesia, thus mitigating problematic effects associated with delayed emergence such as delirium, also activate AMPK (e.g. nicotine, caffeine, forskolin, carbachol). GAs and neurotransmitters also act as preconditioning agents and the GABAA receptor inhibitor bicuculline, which reverses propofol anesthesia, also activates AMPK in cortical neurons. We propose the novel hypothesis that cellular stress-induced AMPK activation links wakefulness, arousal, and consciousness with paradoxical excitation and accelerated emergence from anesthesia. Because AMPK activators including metformin and nicotine promote proliferation and differentiation of neural stem cells located in the subventricular zone and the dentate gyrus, AMPK activation may also enhance brain repair and promote potential recovery from disorders of consciousness (i.e. minimally conscious state, vegetative state, coma).
Collapse
|
6
|
Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med Hypotheses 2018; 116:61-73. [DOI: 10.1016/j.mehy.2018.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
|
7
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
8
|
Finley J. Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Med Hypotheses 2018; 118:44-54. [PMID: 30037614 DOI: 10.1016/j.mehy.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs), also known as "jumping genes", are DNA sequences first described by Nobel laureate Barbara McClintock that comprise nearly half of the human genome and are able to transpose or move from one genomic location to another. As McClintock also noted that a genome "shock" or stress may induce TE activation and transposition, accumulating evidence suggests that cellular stress (e.g. mediated by increases in intracellular reactive oxygen species [ROS] and calcium [Ca2+], etc.) induces TE mobilization in several model organisms and L1s (a member of the retrotransposon class of TEs) are active and capable of retrotransposition in human oocytes, human sperm, and in human neural progenitor cells. Cellular stress also plays a critical role in human placental development, with cytotrophoblast (CTB) differentiation leading to the formation of the syncytiotrophoblast (STB), a cellular layer that facilitates nutrient and gas exchange between the mother and the fetus. Syncytin-1, a protein that promotes fusion of CTB cells and is necessary for STB formation, and its receptor is found in human sperm and human oocytes, respectively, and increases in ROS and Ca2+ promote trophoblast differentiation and syncytin-1 expression. Cellular stress is also essential in promoting human oocyte maturation and activation which, similar to TE mobilization, can be induced by compounds that increase intracellular Ca2+ and ROS levels. AMPK is a master metabolic regulator activated by increases in ROS, Ca2+, and/or an AMP(ADP)/ATP ratio increase, etc. as well as compounds that induce L1 mobilization in human cells. AMPK knockdown inhibits trophoblast differentiation and AMPK-activating compounds that promote L1 mobility also enhance trophoblast differentiation. Cellular stressors that induce TE mobilization (e.g. heat shock) also promote oocyte maturation in an AMPK-dependent manner and the antibiotic ionomycin activates AMPK, promotes TE activation, and induces human oocyte activation, producing normal, healthy children. Metformin promotes AMPK-dependent telomerase activation (critical for telomere maintenance) and induces activation of the endonuclease RAG1 (promotes DNA cleavage and transposition) via AMPK. Both RAG1 and telomerase are derived from TEs. It is our hypothesis that cellular stress and AMPK links TE activation and transposition with placental development and oocyte activation, facilitating both human genome evolution and the creation of all human life. We also propose the novel observation that various cellular stress-inducing compounds (e.g. metformin, resveratrol, etc.) may facilitate beneficial TE activation and transposition and enhance fertilization and embryological development through a common mechanism of AMPK activation.
Collapse
|
9
|
Finley J. Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1. Med Hypotheses 2017; 104:133-146. [PMID: 28673572 DOI: 10.1016/j.mehy.2017.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/26/2017] [Indexed: 12/25/2022]
Abstract
Although promising treatments are currently in development to slow disease progression and increase patient survival, cancer remains the second leading cause of death in the United States. Cancer treatment modalities commonly include chemoradiation and therapies that target components of aberrantly activated signaling pathways. However, treatment resistance is a common occurrence and recent evidence indicates that the existence of cancer stem cells (CSCs) may underlie the limited efficacy and inability of current treatments to effectuate a cure. CSCs, which are largely resistant to chemoradiation therapy, are a subpopulation of cancer cells that exhibit characteristics similar to embryonic stem cells (ESCs), including self-renewal, multi-lineage differentiation, and the ability to initiate tumorigenesis. Interestingly, intracellular mechanisms that sustain quiescence and promote self-renewal in adult stem cells (ASCs) and CSCs likely also function to maintain latency of HIV-1 in CD4+ memory T cells. Although antiretroviral therapy is highly effective in controlling HIV-1 replication, the persistence of latent but replication-competent proviruses necessitates the development of compounds that are capable of selectively reactivating the latent virus, a method known as the "shock and kill" approach. Homeostatic proliferation in central CD4+ memory T (TCM) cells, a memory T cell subset that exhibits limited self-renewal and differentiation and is a primary reservoir for latent HIV-1, has been shown to reinforce and stabilize the latent reservoir in the absence of T cell activation and differentiation. HIV-1 has also been found to establish durable and long-lasting latency in a recently discovered subset of CD4+ T cells known as T memory stem (TSCM) cells. TSCM cells, compared to TCM cells, exhibit stem cell properties that more closely match those of ESCs and ASCs, including self-renewal and differentiation into all memory T cell subsets. It is our hypothesis that activation of AMPK, a master regulator of cellular metabolism that plays a critical role in T cell activation and differentiation of ESCs and ASCs, will lead to both T cell activation-induced latent HIV-1 reactivation, facilitating virus destruction, as well as "activation", differentiation, and/or apoptosis of CSCs, thus inhibiting tumorigenesis. We also propose the novel observation that compounds that have been shown to both facilitate latent HIV-1 reactivation and promote CSC differentiation/apoptosis (e.g. bryostatin-1, JQ1, metformin, butyrate, etc.) likely do so through a common mechanism of AMPK activation.
Collapse
Affiliation(s)
- Jahahreeh Finley
- Finley BioSciences, 9900 Richmond Avenue, #823, Houston, TX 77042-4539, United States.
| |
Collapse
|
10
|
Xiao Y, Ma D, Wang H, Wu D, Chen Y, Ji K, Qin T, Wu L. Matrine Suppresses the ER-positive MCF Cells by Regulating Energy Metabolism and Endoplasmic Reticulum Stress Signaling Pathway. Phytother Res 2017; 31:671-679. [PMID: 28185329 DOI: 10.1002/ptr.5785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
Matrine (C15 H24 N2 O), an alkaloid that is one of the main active components from Sophora flavescens. Matrine has been demonstrated to have therapeutic effects on various solid tumors, including breast cancer, but the mechanism still needs further study. Endoplasmic reticulum (ER)-positive Michigan Cancer Foundation cells were cultured, and matrine was added in various amounts to measure the dose-dependent and time-dependent cytotoxicity. Hoechst 33258 staining was used to observed nuclear morphological changes. Apoptosis was measured by AnnexinV/PI double staining assay kit. Intracellular adenosine triphosphate and glycometabolism were detected by assay kit. The protein levels GRP78, p-eIF2α, CHOP, cytochrome c, and HexokinaseII were analyzed. Mechanistic investigations revealed that matrine treatment causes ER dilation and up-regulated the expression of ER stress markers GRP78, eIF2α, and CHOP, increases the levels of apoptotic in Michigan Cancer Foundation cells, subsequently, blocking the ER stress-mediated apoptosis pathway, significantly decreased matrine-induced apoptotic but still has significant difference between control group. In addition, matrine not only promoted the occurrence of ER stress but also inhibited the expression of hexokinase II, down-regulated energy metabolism. In summary, the present study suggests that the induction of ER stress-mediated apoptosis by matrine and down-regulated energy metabolism may account for its cytotoxic effects in human breast cancer cells. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dachang Ma
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Honglei Wang
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Duoming Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ying Chen
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kun Ji
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tao Qin
- Department of General Surgery, Pingliang City People's Hospital, PingLiang, China
| | - Li Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|