1
|
Yang W, Pan Z, Zhang J, Wang L, lai J, Zhou S, Zhang Z, Fan K, Deng D, Gao Z, Yu S. Extracellular vesicles from adipose stem cells ameliorate allergic rhinitis in mice by immunomodulatory. Front Immunol 2023; 14:1302336. [PMID: 38143758 PMCID: PMC10739383 DOI: 10.3389/fimmu.2023.1302336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Human adipose tissue-derived stem cells (hADSCs) exert potent immunosuppressive effects in the allogeneic transplantation treatment. In mouse model of allergic rhinitis (AR), ADSCs partially ameliorated AR. However, no study has evaluated the potential therapeutic effects of hADSC-derived extracellular vesicles (hADSC-EVs) on AR. Methods Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce AR. One day after the last nasal drop, each group received phosphate buffered saline (PBS) or hADSC-EVs treatment. Associated symptoms and biological changes were then assessed. Results hADSC-EV treatment significantly alleviated nasal symptoms, and reduced inflammatory infiltration. Serum levels of OVA-specific IgE, interleukin (IL)-4 and interferon (IFN)-γ were all significantly reduced. The mRNA levels of IL-4 and IFN-γ in the spleen also changed accordingly. The T helper (Th)1/Th2 cell ratio increased. The treatment efficacy index of hADSC-EV was higher than that of all human-derived MSCs in published reports on MSC treatment of AR. ADSC-EVs exhibited a greater therapeutic index in most measures when compared to our previous treatment involving ADSCs. Conclusion These results demonstrated that hADSC-EVs could ameliorate the symptoms of AR by modulating cytokine secretion and Th1/Th2 cell balance. hADSC-EVs could potentially be a viable therapeutic strategy for AR. Further animal studies are needed to elucidate the underlying mechanisms and to optimize potential clinical protocols.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhiyu Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Ju lai
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Shican Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhili Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Arifka M, Wilar G, Elamin KM, Wathoni N. Polymeric Hydrogels as Mesenchymal Stem Cell Secretome Delivery System in Biomedical Applications. Polymers (Basel) 2022; 14:polym14061218. [PMID: 35335547 PMCID: PMC8955913 DOI: 10.3390/polym14061218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Secretomes of mesenchymal stem cells (MSCs) have been successfully studied in preclinical models for several biomedical applications, including tissue engineering, drug delivery, and cancer therapy. Hydrogels are known to imitate a three-dimensional extracellular matrix to offer a friendly environment for stem cells; therefore, hydrogels can be used as scaffolds for tissue construction, to control the distribution of bioactive compounds in tissues, and as a secretome-producing MSC culture media. The administration of a polymeric hydrogel-based MSC secretome has been shown to overcome the fast clearance of the target tissue. In vitro studies confirm the bioactivity of the secretome encapsulated in the gel, allowing for a controlled and sustained release process. The findings reveal that the feasibility of polymeric hydrogels as MSC -secretome delivery systems had a positive influence on the pace of tissue and organ regeneration, as well as an enhanced secretome production. In this review, we discuss the widely used polymeric hydrogels and their advantages as MSC secretome delivery systems in biomedical applications.
Collapse
Affiliation(s)
- Mia Arifka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
3
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Tang H, Han X, Li T, Feng Y, Sun J. Protective effect of miR-138-5p inhibition modified human mesenchymal stem cell on ovalbumin-induced allergic rhinitis and asthma syndrome. J Cell Mol Med 2021; 25:5038-5049. [PMID: 33973707 PMCID: PMC8178307 DOI: 10.1111/jcmm.16473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The objective of the study is to evaluate the protective effects of human mesenchymal stem cells (hMSCs) modified with miR‐138‐5p inhibitor against the allergic rhinitis and asthma syndrome (ARAS). MiR‐138‐5p or negative control was transfected into hMSCs, and fluorescence‐activated cell sorting was used to evaluate hMSC surface markers. Quantitative real‐time PCR (qRT‐PCR) was used to evaluate miR‐138‐5p, SIRT1, caspase‐3, IL‐6, IL‐1β and TNF‐α levels after TNF‐α and IL‐6 stimulations. hMSCs with or without miR‐138‐5p inhibition was intranasally administered into ARAS mice (n = 10 each group), followed by monitoring sneezing and nasal rubbing events to evaluate the allergic symptoms. Histamine, ovalbumin‐specific IgE, IgG2a, IgG1 and LTC4 release were monitored in the serum and nasal lavage fluid using enzyme‐linked immunosorbent assay. Expression of SIRT1 and HMGB1/TLR4 pathway in nasal mucosa was assessed. After miR‐138‐5p inhibitor transfection, the hMSC lineage was preserved. Binding between SIRT1 and miR‐138‐4p was observed, and miR‐138‐5p inhibition led to upregulation of SIRT1. Inhibition of miR‐138‐5p led to attenuated inflammatory responses of hMSCs upon TNF‐α and IL‐6 stimulation, and allergic symptoms in mice, as well as histamine and ovalbumin‐specific IgG release. hMSCs with miR‐138‐5p inhibition showed characteristics of activated SIRT1 and inhibited HMGB1/TLR4 pathway. Inhibition of miR‐138‐5p in hMSCs enhanced its effects in attenuating inflammatory responses and allergic reaction in the ARAS model, which is presumably regulated by SIRT1 and the HMGB1/TLR4 pathway.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaolei Han
- Health Office, Qingdao Municipal Hospital, Qingdao, China
| | - Tingtian Li
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Feng
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Jie Sun
- Department of International Clinic, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
5
|
Chang SH, Kim HJ, Park CG. Allogeneic ADSCs Induce the Production of Alloreactive Memory-CD8 T Cells through HLA-ABC Antigens. Cells 2020; 9:cells9051246. [PMID: 32443511 PMCID: PMC7290988 DOI: 10.3390/cells9051246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated the immunogenicity of allogeneic human adipose-derived mesenchymal stem cells (ADSCs) through the production of alloreactive-CD8 T and -memory CD8 T cells, based on their human leukocyte antigen (HLA) expression. In surface antigen analysis, ADSCs do not express co-stimulatory molecules, but expresses HLA-ABC, which is further increased by exposure to the pro-inflammatory cytokines as well as IFN-γ alone. For immunogenicity analysis, allogeneic ADSCs cultured in xenofree medium (XF-ADSCs) were incubated with the recipient immune cells for allogeneic-antigen stimulation. As a result, XF-ADSCs induced IFN-γ and IL-17A release by alloreactive-CD8 T cells and the production of alloreactive-CD8 T cell through a direct pathway, although they have immunomodulatory activity. In the analysis of alloreactive memory CD8 T cells, XF-ADSCs also significantly induced the production of CFSE-low-CD8 TEM and -CD8 TCM cells. However, HLA-blocking antibodies significantly inhibited the production of CFSE-low memory-CD8 T cells, indicating that HLAs are the main antigens responsible for the development of allogeneic ADSCs' immunogenicity. These results suggested that HLA surface antigens expressed in allogeneic MSCs should be solved in order to address concerns related to the immunogenicity problem.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Departments of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea;
| | - Hyun Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Dermatology, Samsung Medical Center, Seoul 06351, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Endemic Diseases, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8308
| |
Collapse
|