1
|
Wang Y, Ding S. Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons. J Transl Med 2024; 22:506. [PMID: 38802952 PMCID: PMC11129506 DOI: 10.1186/s12967-024-05266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China
- School of Medicine, Nantong University, Nantong, 226001, P.R. China
| | - Shengguang Ding
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China.
| |
Collapse
|
2
|
Zhu Z, Li C, Gu X, Wang X, Zhang G, Fan M, Zhao Y, Liu X, Zhang X. Paeoniflorin alleviated muscle atrophy in cancer cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling. Toxicol Appl Pharmacol 2024; 484:116846. [PMID: 38331105 DOI: 10.1016/j.taap.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Cancer cachexia is a progressive wasting syndrome, which is mainly characterized by systemic inflammatory response, weight loss, muscle atrophy, and fat loss. Paeoniflorin (Pae) is a natural compound extracted from the dried root of Paeonia lactiflora Pallas, which is featured in anti-inflammatory, antioxidant, and immunoregulatory pharmacological activities. While, the effects of Pae on cancer cachexia had not been reported before. In the present study, the effects of Pae on muscle atrophy in cancer cachexia were observed both in vitro and in vivo using C2C12 myotube atrophy cell model and C26 tumor-bearing cancer cachexia mice model. In the in vitro study, Pae could alleviate myotubes atrophy induced by conditioned medium of C26 colon cancer cells or LLC Lewis lung cancer cells by decreasing the expression of Atrogin-1 and inhibited the decrease of MHC and MyoD. In the in vivo study, Pae ameliorated weight loss and improved the decrease in cross-sectional area of muscle fibers and the impairment of muscle function in C26 tumor-bearing mice. The inhibition of TLR4/NF-κB pathway and the activation of AKT/mTOR pathway was observed both in C2C12 myotubes and C26 tumor-bearing mice treated by Pae, which might be the main basis of its ameliorating effects on muscle atrophy. In addition, Pae could inhibit the release of IL-6 from C26 tumor cells, which might also contribute to its ameliorating effects on muscle atrophy. Overall, Pae might be a promising candidate for the therapy of cancer cachexia.
Collapse
Affiliation(s)
- Zixia Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Cong Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaoting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201003, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
3
|
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024; 13:252. [PMID: 38334644 PMCID: PMC10854699 DOI: 10.3390/cells13030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Cachexia is a condition characterized by substantial loss of body weight resulting from the depletion of skeletal muscle and adipose tissue. A considerable fraction of patients with advanced cancer, particularly those who have been diagnosed with pancreatic or gastric cancer, lung cancer, prostate cancer, colon cancer, breast cancer, or leukemias, are impacted by this condition. This syndrome manifests at all stages of cancer and is associated with an unfavorable prognosis. It heightens the susceptibility to surgical complications, chemotherapy toxicity, functional impairments, breathing difficulties, and fatigue. The early detection of patients with cancer cachexia has the potential to enhance both their quality of life and overall survival rates. Regarding this matter, blood biomarkers, although helpful, possess certain limitations and do not exhibit universal application. Additionally, the available treatment options for cachexia are currently limited, and there is a lack of comprehensive understanding of the underlying molecular pathways associated with this condition. Thus, this review aims to provide an overview of molecular mechanisms associated with cachexia and potential therapeutic targets for the development of effective treatments for this devastating condition.
Collapse
Affiliation(s)
- Mahdi Neshan
- Department of General Surgery, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915887857, Iran;
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Xu Han
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| |
Collapse
|
4
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
5
|
Yoon SL, Grundmann O. Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia. Nutrients 2023; 15:3391. [PMID: 37571328 PMCID: PMC10421404 DOI: 10.3390/nu15153391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cachexia is a multi-organ syndrome with unintentional weight loss, sarcopenia, and systemic inflammation. Gastrointestinal (GI) cancer patients are more susceptible to cachexia development due to impaired nutrient absorption and digestion. Given the widespread availability and relatively low cost of dietary supplements, we examined the evidence and effects of fish oil (omega-3 fatty acids), melatonin, probiotics, and green tea for managing symptoms of GI cancer cachexia. A literature review of four specific supplements was conducted using PubMed, Google Scholar, and CINAHL without a date restriction. Of 4621 available literature references, 26 articles were eligible for review. Fish oil decreased C-reactive protein and maintained CD4+ cell count, while melatonin indicated inconsistent findings on managing cachexia, but was well-tolerated. Probiotics decreased serum pro-inflammatory biomarkers and increased the tolerability of chemotherapy by reducing side effects. Green tea preparations and extracts showed a decreased risk of developing various cancers and did not impact tumor growth, survival, or adverse effects. Among these four supplements, probiotics are most promising for further research in preventing systemic inflammation and maintaining adequate absorption of nutrients to prevent the progression of cancer cachexia. Supplements may benefit treatment outcomes in cancer cachexia without side effects while supporting nutritional and therapeutic needs.
Collapse
Affiliation(s)
- Saunjoo L. Yoon
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA;
| | - Oliver Grundmann
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
7
|
Dagnino-Leone J, Figueroa CP, Castañeda ML, Youlton AD, Vallejos-Almirall A, Agurto-Muñoz A, Pavón Pérez J, Agurto-Muñoz C. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput Struct Biotechnol J 2022; 20:1506-1527. [PMID: 35422968 PMCID: PMC8983314 DOI: 10.1016/j.csbj.2022.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Phycobiliproteins (PBPs) are fluorescent proteins of various colors, including fuchsia, purple-blue and cyan, that allow the capture of light energy in auxiliary photosynthetic complexes called phycobilisomes (PBS). PBPs have several highly preserved structural and physicochemical characteristics. In the PBS context, PBPs function is capture luminous energy in the 450-650 nm range and delivers it to photosystems allowing photosynthesis take place. Besides the energy harvesting function, PBPs also have shown to have multiple biological activities, including antioxidant, antibacterial and antitumours, making them an interesting focus for different biotechnological applications in areas like biomedicine, bioenergy and scientific research. Nowadays, the main sources of PBPs are cyanobacteria and micro and macro algae from the phylum Rhodophyta. Due to the diverse biological activities of PBPs, they have attracted the attention of different industries, such as food, biomedical and cosmetics. This is why a large number of patents related to the production, extraction, purification of PBPs and their application as cosmetics, biopharmaceuticals or diagnostic applications have been generated, looking less ecological impact in the natural prairies of macroalgae and less culture time or higher productivity in cyanobacteria to satisfy the markets and applications that require high amounts of these molecules. In this review, we summarize the main structural characteristics of PBPs, their biosynthesys and biotechnological applications. We also address current trends and future perspectives of the PBPs market.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristina Pinto Figueroa
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Mónica Latorre Castañeda
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrea Donoso Youlton
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrés Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Jessy Pavón Pérez
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| |
Collapse
|