1
|
Gu LY, Jia CG, Sheng ZZ, Jiang WL, Xu ZW, Li WZ, Cui JY, Zhang H. Fibroblast Growth Factor 21 Suppressed Neutrophil Extracellular Traps Induced by Myocardial Ischemia/Reperfusion Injury via Adenosine Monophosphate-Activated Protein Kinase. Cardiol Res 2024; 15:404-414. [PMID: 39420979 PMCID: PMC11483118 DOI: 10.14740/cr1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background Previous investigations have established the anti-inflammatory properties of fibroblast growth factor 21 (FGF21). However, the specific mechanism through which FGF21 mitigates myocardial ischemia/reperfusion (I/R) injury by inhibiting neutrophil extracellular traps (NETs) remains unclear. Methods A mice model of myocardial I/R injury was induced, and myocardial tissue was stained with immunofluorescence to assess NETs. Serum NETs levels were quantified using a PicoGreen kit. In addition, the expression levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and FGF21 were evaluated by Wes fully automated protein blotting quantitative analysis system. Moreover, a hypoxia/reoxygenation (H/R) model was established using AMPK inhibitor and agonist pretreated H9c2 cells to further explore the relationship between FGF21 and AMPK. Results Compared with the control group, serum NETs levels were significantly higher in I/R mice, and a large number of NETs were formed in myocardial tissues (97.63 ± 11.45 vs. 69.65 ± 3.33, P < 0.05). However, NETs levels were reversed in FGF21 pretreated mice (P < 0.05). Further studies showed that FGF21 enhanced AMPK expression, which was significantly increased after inhibition of AMPK and decreased after promotion of AMPK (P < 0.05). Conclusions FGF21 may exert cardioprotective effects by inhibiting I/R injury-induced NETs via AMPK.
Collapse
Affiliation(s)
- Ling Yun Gu
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Cheng Gao Jia
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Zuo Zhen Sheng
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Wen Long Jiang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zhuo Wen Xu
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Wei Zhang Li
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Jun You Cui
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hua Zhang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| |
Collapse
|
2
|
Zong Y, Li J, Xu X, Xu X. Effects of nicorandil on systemic inflammation and oxidative stress induced by percutaneous coronary intervention in patients with coronary heart disease. J Int Med Res 2021; 49:3000605211058873. [PMID: 34871513 PMCID: PMC8652181 DOI: 10.1177/03000605211058873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective The present study investigated the effects of a bolus intracoronary injection of nicorandil on systemic inflammation and oxidative stress induced by percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD). Methods Patients undergoing coronary angiography (CAG) were enrolled into the CAG group (n = 30). Patients undergoing PCI were randomly divided into the PCI (n = 30) and PCI + nicorandil groups (n = 30). Results Blood taken from patients in the placebo group 24 hours after PCI exhibited significant increases in the expression of inflammatory indicators and mild increases in the expression of anti-inflammatory indicators. The intracoronary injection of nicorandil reversed the elevation of inflammatory indicators and significantly increased the levels of anti-inflammatory indicators in the blood of patients with PCI. Blood taken from patients in the placebo group 24 hours after PCI also displayed significant decreased superoxide dismutase levels and increased malondialdehyde levels. Nicorandil treatment reversed these changes of oxidative stress marker levels. Conclusions These results indicated the possible medical application of intracoronary injections of nicorandil for reducing systemic inflammation and oxidative stress in the peripheral blood of patients undergoing PCI.
Collapse
Affiliation(s)
- Yulong Zong
- Clinical Laboratory Center, Taian City Central Hospital, Taian, Shandong, China
| | - Jie Li
- Department of Cardiology, 66310First Affiliated Hospital of Shandong First Medical University, First Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xinghua Xu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| |
Collapse
|
3
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules 2020; 10:biom10070998. [PMID: 32635556 PMCID: PMC7408088 DOI: 10.3390/biom10070998] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation.
Collapse
Affiliation(s)
- Massimo Bonora
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Correspondence: (M.B.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Daniela Ramaccini
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Gaia Pedriali
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Asrat Endrias Kahsay
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
- Correspondence: (M.B.); (P.P.)
| |
Collapse
|