1
|
Fan Q, Wu YZ, Jia XX, A R, Liu CM, Zhang WW, Chao ZY, Zhou DH, Wang Y, Chen J, Xiao K, Chen C, Shi Q, Dong XP. Increased Gal-3 Mediates Microglia Activation and Neuroinflammation via the TREM2 Signaling Pathway in Prion Infection. ACS Chem Neurosci 2023; 14:3772-3793. [PMID: 37769016 DOI: 10.1021/acschemneuro.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Galectin 3 (Gal-3) is one of the major elements for activating microglia and mediating neuroinflammation in some types of neurodegenerative diseases. However, its role in the pathogenesis of prion disease is seldom addressed. In this study, markedly increased brain Gal-3 was identified in three scrapie-infected rodent models at the terminal stage. The increased Gal-3 was mainly colocalized with the activated microglia. Coincidental with the increased brain Gal-3 in prion-infected animals, the expression of brain trigger receptor expressed in myeloid cell 2 (TREM2), one of the Gal-3 receptors, and some components in the downstream pathway also significantly increased, whereas Toll-like receptor 4 (TLR4), another Gal-3 receptor, and the main components in its downstream signaling were less changed. The increased Gal-3 signals were distributed at the areas with PrPSc deposit but looked not to colocalize directly with PrPSc/PrP signals. Similar changing profiles of Gal-3, the receptors TREM2 and TLR4, as well as the proteins in the downstream pathways were also observed in prion-infected cell line SMB-S15. Removal of PrPSc replication in SMB-S15 cells reversed the upregulation of cellular Gal-3, TREM2, and the relevant proteins. Moreover, we presented data for interactions of Gal-3 with TREM2 and with TLR4 morphologically and molecularly in the cultured cells. Stimulation of prion-infected cells or their normal partner cells with recombinant mouse Gal-3 in vitro induced obvious responses for activation of TREM2 signaling and TLR4 signaling. Our data here strongly indicate that prion infection or PrPSc deposit induces remarkably upregulated brain Gal-3, which is actively involved in the microglia activation and neuroinflammation mainly via TREM2 signaling.
Collapse
Affiliation(s)
- Qin Fan
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruhan A
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chu-Mou Liu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- North China University of Science and Technology, Tangshan 063210 China
| | - Zhi-Yue Chao
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- North China University of Science and Technology, Tangshan 063210 China
| | - Jia Chen
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai 200032, China
| |
Collapse
|
2
|
Shen X. Research progress on pathogenesis and clinical treatment of neuromyelitis optica spectrum disorders (NMOSDs). Clin Neurol Neurosurg 2023; 231:107850. [PMID: 37390569 DOI: 10.1016/j.clineuro.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are characteristically referred to as various central nervous system (CNS)-based inflammatory and astrocytopathic disorders, often manifested by the axonal damage and immune-mediated demyelination targeting optic nerves and the spinal cord. This review article presents a detailed view of the etiology, pathogenesis, and prescribed treatment options for NMOSD therapy. Initially, we present the epidemiology of NMOSDs, highlighting the geographical and ethnical differences in the incidence and prevalence rates of NMOSDs. Further, the etiology and pathogenesis of NMOSDs are emphasized, providing discussions relevant to various genetic, environmental, and immune-related factors. Finally, the applied treatment strategies for curing NMOSD are discussed, exploring the perspectives for developing emergent innovative treatment strategies.
Collapse
Affiliation(s)
- Xinyu Shen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, PR China.
| |
Collapse
|
3
|
Li W, Liu J, Tan W, Zhou Y. The role and mechanisms of Microglia in Neuromyelitis Optica Spectrum Disorders. Int J Med Sci 2021; 18:3059-3065. [PMID: 34400876 PMCID: PMC8364446 DOI: 10.7150/ijms.61153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune neurological disease that can cause blindness and disability. As the major mediators in the central nervous system, microglia plays key roles in immunological regulation in neuroinflammatory diseases, including NMOSD. Microglia can be activated by interleukin (IL)-6 and type I interferons (IFN-Is) during NMOSD, leading to signal transducer and activator of transcription (STAT) activation. Moreover, complement C3a secreted from activated astrocytes may induce the secretion of complement C1q, inflammatory cytokines and progranulin (PGRN) by microglia, facilitating injury to microglia, neurons, astrocytes and oligodendrocytes in an autocrine or paracrine manner. These processes involving activated microglia ultimately promote the pathological course of NMOSD. In this review, recent research progress on the roles of microglia in NMOSD pathogenesis is summarized, and the mechanisms of microglial activation and microglial-mediated inflammation, and the potential research prospects associated with microglial activation are also discussed.
Collapse
Affiliation(s)
- Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|