1
|
Tepes M, Krezic I, Vranes H, Smoday IM, Kalogjera L, Zizek H, Vukovic V, Oroz K, Kovac KK, Madzar Z, Rakic M, Miskic B, Sikiric S, Barisic I, Strbe S, Antunovic M, Novosel L, Kavelj I, Vlainic J, Dobric I, Staresinic M, Skrtic A, Seiwerth S, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy: Effect on Reperfusion Following Maintained Intra-Abdominal Hypertension (Grade III and IV) in Rats. Pharmaceuticals (Basel) 2023; 16:1554. [PMID: 38004420 PMCID: PMC10675657 DOI: 10.3390/ph16111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Given in reperfusion, the use of stable gastric pentadecapeptide BPC 157 is an effective therapy in rats. It strongly counteracted, as a whole, decompression/reperfusion-induced occlusion/occlusion-like syndrome following the worst circumstances of acute abdominal compartment and intra-abdominal hypertension, grade III and grade IV, as well as compression/ischemia-occlusion/occlusion-like syndrome. Before decompression (calvariectomy, laparotomy), rats had long-lasting severe intra-abdominal hypertension, grade III (25 mmHg/60 min) (i) and grade IV (30 mmHg/30 min; 40 mmHg/30 min) (ii/iii), and severe occlusion/occlusion-like syndrome. Further worsening was caused by reperfusion for 60 min (i) or 30 min (ii/iii). Severe vascular and multiorgan failure (brain, heart, liver, kidney, and gastrointestinal lesions), widespread thrombosis (peripherally and centrally) severe arrhythmias, intracranial (superior sagittal sinus) hypertension, portal and caval hypertension, and aortal hypotension were aggravated. Contrarily, BPC 157 therapy (10 µg/kg, 10 ng/kg sc) given at 3 min reperfusion times eliminated/attenuated venous hypertension (intracranial (superior sagittal sinus), portal, and caval) and aortal hypotension and counteracted the increases in organ lesions and malondialdehyde values (blood ˃ heart, lungs, liver, kidney ˃ brain, gastrointestinal tract). Vascular recovery promptly occurred (i.e., congested inferior caval and superior mesenteric veins reversed to the normal vessel presentation, the collapsed azygos vein reversed to a fully functioning state, the inferior caval vein-superior caval vein shunt was recovered, and direct blood delivery returned). BPC 157 therapy almost annihilated thrombosis and hemorrhage (i.e., intracerebral hemorrhage) as proof of the counteracted general stasis and Virchow triad circumstances and reorganized blood flow. In conclusion, decompression/reperfusion-induced occlusion/occlusion-like syndrome counteracted by BPC 157 therapy in rats is likely for translation in patients. It is noteworthy that by rapidly counteracting the reperfusion course, it also reverses previous ischemia-course lesions, thus inducing complete recovery.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
- PhD Program Translational Research in Biomedicine-TRIBE, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Kasnik Kovac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Zrinko Madzar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Mislav Rakic
- Department of Abdominal Surgery, Clinical Hospital Dubrava, 10040 Zagreb, Croatia;
| | - Blazenka Miskic
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruder Boskovic, 10000 Zagreb, Croatia;
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| |
Collapse
|
2
|
Smoday IM, Krezic I, Kalogjera L, Vukovic V, Zizek H, Skoro M, Kovac KK, Vranes H, Barisic I, Sikiric S, Strbe S, Tepes M, Oroz K, Zubcic S, Stupnisek M, Beketic Oreskovic L, Kavelj I, Novosel L, Prenc M, Barsic Ostojic S, Dobric I, Sever M, Blagaic AB, Skrtic A, Staresinic M, Sjekavica I, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 as Therapy for Inferior Caval Vein Embolization: Recovery of Sodium Laurate-Post-Embolization Syndrome in Rats. Pharmaceuticals (Basel) 2023; 16:1507. [PMID: 37895979 PMCID: PMC10610251 DOI: 10.3390/ph16101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
After inferior caval vein embolization therapy, post-embolization syndrome (sodium laurate 10 mg/kg, 0.1 mL into rat inferior caval vein, assessment at 15, 30, 60 min, prime lung lesions, thromboemboli occluding lung vessels), as a severe occlusion/occlusion-like syndrome, might be resolved as a whole by stable gastric pentadecapeptide BPC 157 therapy. At 5 min after laurate injection, stable gastric pentadecapeptide BPC 157 was implemented as therapy (10 µg/kg, 10 ng/kg intraperitoneally or intragastrically). As before, confronted with the occlusion of major vessel(s) or similar noxious procedures, such as rapidly acting Virchow triad circumstances, the particular effect of the therapy (i.e., collateral pathways activation, "bypassing vascular key", i.e., direct blood flow delivery via activation of azygos vein) assisted in the recovery of the vessel/s and counteracted multiorgan failure due to occlusion/occlusion-like syndrome as a whole in the laurate-injected rats. Along with prime lung lesions and thromboemboli occluding lung vessels, post-embolization syndrome rapidly occurred peripherally and centrally as a shared multiorgan and vessel failure, brain, heart, lung, liver, kidney, and gastrointestinal tract lesions, venous hypertension (intracranial (superior sagittal sinus), portal, and caval), aortal hypotension, progressing thrombosis in veins and arteries and stasis, congested and/or failed major veins, and severe ECG disturbances. Whatever the cause, these were all counteracted, eliminated, or attenuated by the application of BPC 157 therapy. As recovery with BPC 157 therapy commonly and rapidly occurred, reversing the collapsed azygos vein to the rescuing collateral pathway might initiate rapid direct blood delivery and start blood flow reorganization. In conclusion, we suggest BPC 157 therapy to resolve further vascular and embolization injuries.
Collapse
Affiliation(s)
- Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Marija Skoro
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Katarina Kasnik Kovac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Mirjana Stupnisek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Ivana Kavelj
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Luka Novosel
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Matea Prenc
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Sanja Barsic Ostojic
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb,10000 Zagreb, Croatia; (I.D.); (M.S.)
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb,10000 Zagreb, Croatia; (I.D.); (M.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb,10000 Zagreb, Croatia; (I.D.); (M.S.)
| | - Ivica Sjekavica
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| |
Collapse
|
3
|
Strbe S, Smoday IM, Krezic I, Kalogjera L, Vukovic V, Zizek H, Gojkovic S, Vranes H, Barisic I, Sikiric S, Tepes M, Oroz K, Brkic F, Drinkovic M, Beketic Oreskovic L, Popic J, Boban Blagaic A, Skrtic A, Staresinic M, Seiwerth S, Sikiric P. Innate Vascular Failure by Application of Neuroleptics, Amphetamine, and Domperidone Rapidly Induced Severe Occlusion/Occlusion-like Syndromes in Rats and Stable Gastric Pentadecapeptide BPC 157 as Therapy. Pharmaceuticals (Basel) 2023; 16:788. [PMID: 37375736 DOI: 10.3390/ph16060788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Even before behavioral disturbances, neuroleptics, amphetamine, and domperidone application rapidly emerged severe occlusion/occlusion-like syndrome, shared innate vascular and multiorgan failure in rats, comparable to occlusion/occlusion-like syndrome described with vessel(s) occlusion or similar noxious procedures application. As therapy, i.e., activation of the collateral pathways, "bypassing key" (activated azygos vein pathway, direct blood flow delivery), the stable gastric pentadecapeptide BPC 157 is a novel solution. Recently, BPC 157 therapy particularly counteracted neuroleptic- or L-NAME-induced catalepsy, lithium intoxication, and schizophrenia positive and negative symptoms (amphetamine/methamphetamine/apomorphine/ketamine). In rats with complete calvariectomy, medication (BPC 157 10 µg/kg, 10 ng/kg ip or ig) was given 5 min after distinctive dopamine agents (mg/kg ip) (haloperidol (5), fluphenazine (5), clozapine (10), risperidone (5), olanzapine (10), quetiapine (10), or aripiprazole (10), domperidone (25), amphetamine (10), and combined amphetamine and haloperidol) and assessed at 15 min thereafter. All neuroleptic-, domperidone-, and amphetamine-induced comparable vascular and multiorgan failure severe syndrome was alleviated with BPC 157 therapy as before major vessel(s) occlusion or other similar noxious procedures. Specifically, all severe lesions in the brain (i.e., immediate swelling, hemorrhage), heart (i.e., congestion, arrhythmias), and lung (i.e., congestion, hemorrhage), as well as congestion in the liver, kidney, and gastrointestinal (stomach) tract, were resolved. Intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were attenuated or eliminated. BPC 157 therapy almost annihilated arterial and venous thrombosis, peripherally and centrally. Thus, rapidly acting Virchow triad circumstances that occur as dopamine central/peripheral antagonists and agonist essential class-points, fully reversed by BPC 157 therapy, might be overwhelming for both neuroleptics and amphetamine.
Collapse
Affiliation(s)
- Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Filip Brkic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Martin Drinkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Jelena Popic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Sikiric P, Gojkovic S, Krezic I, Smoday IM, Kalogjera L, Zizek H, Oroz K, Vranes H, Vukovic V, Labidi M, Strbe S, Baketic Oreskovic L, Sever M, Tepes M, Knezevic M, Barisic I, Blagaic V, Vlainic J, Dobric I, Staresinic M, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157 May Recover Brain-Gut Axis and Gut-Brain Axis Function. Pharmaceuticals (Basel) 2023; 16:ph16050676. [PMID: 37242459 DOI: 10.3390/ph16050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Conceptually, a wide beneficial effect, both peripherally and centrally, might have been essential for the harmony of brain-gut and gut-brain axes' function. Seen from the original viewpoint of the gut peptides' significance and brain relation, the favorable stable gastric pentadecapeptide BPC 157 evidence in the brain-gut and gut-brain axes' function might have been presented as a particular interconnected network. These were the behavioral findings (interaction with main systems, anxiolytic, anticonvulsive, antidepressant effect, counteracted catalepsy, and positive and negative schizophrenia symptoms models). Muscle healing and function recovery appeared as the therapeutic effects of BPC 157 on the various muscle disabilities of a multitude of causes, both peripheral and central. Heart failure was counteracted (including arrhythmias and thrombosis), and smooth muscle function recovered. These existed as a multimodal muscle axis impact on muscle function and healing as a function of the brain-gut axis and gut-brain axis as whole. Finally, encephalopathies, acting simultaneously in both the periphery and central nervous system, BPC 157 counteracted stomach and liver lesions and various encephalopathies in NSAIDs and insulin rats. BPC 157 therapy by rapidly activated collateral pathways counteracted the vascular and multiorgan failure concomitant to major vessel occlusion and, similar to noxious procedures, reversed initiated multicausal noxious circuit of the occlusion/occlusion-like syndrome. Severe intracranial (superior sagittal sinus) hypertension, portal and caval hypertensions, and aortal hypotension were attenuated/eliminated. Counteracted were the severe lesions in the brain, lungs, liver, kidney, and gastrointestinal tract. In particular, progressing thrombosis, both peripherally and centrally, and heart arrhythmias and infarction that would consistently occur were fully counteracted and/or almost annihilated. To conclude, we suggest further BPC 157 therapy applications.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - May Labidi
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijan Tepes
- Department of Clinical Medicine, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Obstetrics and Gynecology, Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, 10000 Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle. Biomedicines 2022; 10:biomedicines10123221. [PMID: 36551977 PMCID: PMC9775659 DOI: 10.3390/biomedicines10123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application).
Collapse
|
6
|
Stable Gastric Pentadecapeptide BPC 157 as Useful Cytoprotective Peptide Therapy in the Heart Disturbances, Myocardial Infarction, Heart Failure, Pulmonary Hypertension, Arrhythmias, and Thrombosis Presentation. Biomedicines 2022; 10:biomedicines10112696. [PMID: 36359218 PMCID: PMC9687817 DOI: 10.3390/biomedicines10112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
In heart disturbances, stable gastric pentadecapeptide BPC 157 especial therapy effects combine the therapy of myocardial infarction, heart failure, pulmonary hypertension arrhythmias, and thrombosis prevention and reversal. The shared therapy effect occurred as part of its even larger cytoprotection (cardioprotection) therapy effect (direct epithelial cell protection; direct endothelium cell protection) that BPC 157 exerts as a novel cytoprotection mediator, which is native and stable in human gastric juice, as well as easily applicable. Accordingly, there is interaction with many molecular pathways, combining maintained endothelium function and maintained thrombocytes function, which counteracted thrombocytopenia in rats that underwent major vessel occlusion and deep vein thrombosis and counteracted thrombosis in all vascular studies; the coagulation pathways were not affected. These appeared as having modulatory effects on NO-system (NO-release, NOS-inhibition, NO-over-stimulation all affected), controlling vasomotor tone and the activation of the Src-Caveolin-1-eNOS pathway and modulatory effects on the prostaglandins system (BPC 157 counteracted NSAIDs toxicity, counteracted bleeding, thrombocytopenia, and in particular, leaky gut syndrome). As an essential novelty noted in the vascular studies, there was the activation of the collateral pathways. This might be the upgrading of the minor vessel to take over the function of the disabled major vessel, competing with and counteracting the Virchow triad circumstances devastatingly present, making possible the recruitment of collateral blood vessels, compensating vessel occlusion and reestablishing the blood flow or bypassing the occluded or ruptured vessel. As a part of the counteraction of the severe vessel and multiorgan failure syndrome, counteracted were the brain, lung, liver, kidney, gastrointestinal lesions, and in particular, the counteraction of the heart arrhythmias and infarction.
Collapse
|
7
|
Smoday IM, Petrovic I, Kalogjera L, Vranes H, Zizek H, Krezic I, Gojkovic S, Skorak I, Hriberski K, Brizic I, Kubat M, Strbe S, Barisic I, Sola M, Lovric E, Lozic M, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Therapy Effect of the Stable Gastric Pentadecapeptide BPC 157 on Acute Pancreatitis as Vascular Failure-Induced Severe Peripheral and Central Syndrome in Rats. Biomedicines 2022; 10:biomedicines10061299. [PMID: 35740321 PMCID: PMC9220115 DOI: 10.3390/biomedicines10061299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
We revealed the therapy effect of the stable gastric pentadecapeptide BPC 157 (10 μg/kg, 10 ng/kg ig or po) with specific activation of the collateral rescuing pathways, the azygos vein, on bile duct ligation in particular, and acute pancreatitis as local disturbances (i.e., improved gross and microscopy presentation, decreased amylase level). Additionally, we revealed the therapy’s effect on the acute pancreatitis as vascular failure and multiorgan failure, both peripherally and centrally following “occlusion-like” syndrome, major intoxication (alcohol, lithium), maintained severe intra-abdominal hypertension, and myocardial infarction, or occlusion syndrome, and major vessel occlusion. The application-sacrifice periods were ligation times of 0–30 min, 0–5 h, 0–24 h (cured periods, early regimen) and 4.30 h–5 h, 5 h–24 h (cured periods, delayed regimen). Otherwise, bile duct-ligated rats commonly presented intracranial (superior sagittal sinus), portal and caval hypertension and aortal hypotension, gross brain swelling, hemorrhage and lesions, heart dysfunction, lung lesions, liver and kidney failure, gastrointestinal lesions, and severe arterial and venous thrombosis, peripherally and centrally. Unless antagonized with the key effect of BPC 157 regimens, reversal of the inferior caval and superior mesenteric vein congestion and reversal of the failed azygos vein activated azygos vein-recruited direct delivery to rescue the inferior-superior caval vein pathway; these were all antecedent to acute pancreatitis major lesions (i.e., acinar, fat necrosis, hemorrhage). These lesions appeared in the later period, but were markedly attenuated/eliminated (i.e., hemorrhage) in BPC 157-treated rats. To summarize, while the innate vicious cycle may be peripheral (bile duct ligation), or central (rapidly developed brain disturbances), or peripheral and central, BPC 157 resolved acute pancreatitis and its adjacent syndrome.
Collapse
Affiliation(s)
- Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Igor Petrovic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Skorak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Klaudija Hriberski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Brizic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Milovan Kubat
- Department of Forensic Medicine and Criminology, School of Medicne, 10000 Zagreb, Croatia;
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Marin Lozic
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.)
| |
Collapse
|
8
|
Novel Therapeutic Effects in Rat Spinal Cord Injuries: Recovery of the Definitive and Early Spinal Cord Injury by the Administration of Pentadecapeptide BPC 157 Therapy. Curr Issues Mol Biol 2022; 44:1901-1927. [PMID: 35678659 PMCID: PMC9164058 DOI: 10.3390/cimb44050130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Recently, marked therapeutic effects pertaining to the recovery of injured rat spinal cords (1 min compression injury of the sacrocaudal spinal cord (S2-Co1) resulting in tail paralysis) appeared after a single intraperitoneal administration of the stable gastric pentadecapeptide BPC 157 at 10 min post-injury. Besides the demonstrated rapid and sustained recovery (1 year), we showed the particular points of the immediate effect of the BPC 157 therapy that began rapidly after its administration, (i) soon after injury (10 min), or (ii) later (4 days), in the rats with a definitive spinal cord injury. Specifically, in counteracting spinal cord hematoma and swelling, (i) in rats that had undergone acute spinal cord injury, followed by intraperitoneal BPC 157 application at 10 min, we focused on the first 10–30 min post-injury period (assessment of gross, microscopic, and gene expression changes). Taking day 4 post-injury as the definitive injury, (ii) we focused on the immediate effects after the BPC 157 intragastric application over 20 min of the post-therapy period. Comparable long-time recovery was noted in treated rats which had definitive tail paralysis: (iii) the therapy was continuously given per orally in drinking water, beginning at day 4 after injury and lasting one month after injury. BPC 157 rats presented only discrete edema and minimal hemorrhage and increased Nos1, Nos2, and Nos3 values (30 min post-injury, (i)) or only mild hemorrhage, and only discrete vacuolation of tissue (day 4, (ii)). In the day 4–30 post-injury study (iii), BPC 157 rats rapidly presented tail function recovery, and no demyelination process (Luxol fast blue staining).
Collapse
|