Benavides MA. L-Methionine May Modulate the Assembly of SARS-CoV-2 by Interfering with the Mechanism of RNA Polymerase.
Med Hypotheses 2022;
161:110798. [PMID:
35185264 PMCID:
PMC8841269 DOI:
10.1016/j.mehy.2022.110798]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022]
Abstract
Coronaviruses have received worldwide attention following several severe acute respiratory syndrome (SARS) epidemics. In 2019, the first case of coronavirus disease (COVID-19) caused by a novel coronavirus (SARS-coronavirus 2 [CoV-2]) was reported. SARS-CoV-2 employs RNA-dependent RNA polymerase (RdRp) for genome replication and gene transcription. Recent studies have identified a sulfur (S) metal-binding site in the zinc center structures of the RdRp complex. This metal-binding site is essential for the proper functioning of the viral helicase. We hypothesize that the use of essential nutrients can permeabilize the cell membranes. The oxidation of the metal-binding site occurs via analogs of the essential S-containing amino acid, l-Methionine. l-Methionine can operate as a carrier, and its binding would cause the potential disassembly of RdRp via the S complex and drive methyl donors via a possible countercurrent exchange mechanism and electrical-chemical gradient leading to SARS-CoV-2 replication failure. Our previously published hypothesis on the control of cancer cell proliferation suggests that the presence of a novel disulfide/methyl- adenosine triphosphate pump as an energy source would allow this process.
The S binding site in l-Methionine serves as a potential target cofactor for SARS-CoV RdRp, thus providing a possible avenue for the future development of vaccines and antiviral therapeutic strategies to combat COVID-19.
Collapse