1
|
Al-Amshawee SKA, Yunus MYBM. Electrodialysis membrane desalination with diagonal membrane spacers: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28727-y. [PMID: 37620701 DOI: 10.1007/s11356-023-28727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Abstract
Electrodialysis desalination uses ion exchange membranes, membrane spacers, and conductors to remove salt from water. Membrane spacers, made of polymeric strands, reduce concentration polarization. These spacers have properties such as porosity and filament shape that affect their performance. One important property is the spacer-bulk attack angle. This study systematically reviews the characteristics of a 45° attack angle of spacers and its effects on concentration polarization and fluid dynamics. Membrane spacers in a channel create distinct flow fields and concentration profiles. When set at a 45° attack angle, spacers provide greater turbulence and mass-heat transfer than traditional spacers. This is because both the transverse and longitudinal filaments become diagonal in relation to the bulk flow direction. A lower attack angle (<45°) results in a lower pressure drop coupled with a decline in wakes and stream disruption because when the filaments are more parallel to the primary fluid direction, the poorer their affect. This research concludes that membrane spacers with a 45° spacer-bulk attack angle function optimally compared to other angles.
Collapse
Affiliation(s)
- Sajjad Khudhur Abbas Al-Amshawee
- Centre for Sustainability of Ecosystem and Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem and Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| |
Collapse
|
2
|
Al-Amshawee SKA, Yunus MYBM, Mohamed HS. Electrodialysis membrane desalination for water and wastewater processing: irregular attack angles of membrane spacers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28433-9. [PMID: 37378732 DOI: 10.1007/s11356-023-28433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Electrodialysis desalination is constructed with a number of anion exchange membranes (AEM), cation exchange membranes (CEM), anode, cathode, adjacent silicon gasket integrated membrane spacers, and inlet/outlet holes per cell. At the boundary among an ionic solution and an ion exchange membrane, concentration polarization develops. Spacers placed in between channel's walls function as stream baffles to increase turbulence, improve heat and mass transfer, diminish the laminar boundary layer, and lessen fouling problems. The current study offers a systematic review of membrane spacers, spacer-bulk attack angles, and irregular attack angles. Spacer-bulk attack angle is accountable for variations in the pattern and direction of stream which impact heat-mass transfer and concentration polarization. Irregular attack angles (e.g., 0°, 15°, 30°, 37°, 45°, 55°, 60°, 62°, 70°, 74°, 80°, 90°, 110°, 120°) in the present study were found to provide unique stream patterns due to the spacer's filaments being less or more transverse in respect to the primary solution direction, which may significantly alter heat transfer, mass transport, pressure drop, and overall flow dynamics. Spacer applies shear stress resulting by continuous stream tangent to the membrane exterior, which lessens polarization. In the end, 45° is concluded as the preferred attack angle that offers balanced rates of heat transfer, mass transport, and pressure drop throughout the feed channel while greatly lowering the rate of concentration polarization.
Collapse
Affiliation(s)
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Pahang, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Pahang, Malaysia
| | - Hybat Salih Mohamed
- Chemical Engineering Department, College of Engineering, Universiti Malaysia Pahang, 26300, Pahang, Malaysia
| |
Collapse
|
3
|
Al-Amshawee SKA, Yunus MYBM, Dakhil IH. Ion exchange membrane electrodialysis for water and wastewater processing: application of ladder-type membrane spacers to impact solution concentration and flow dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27940-z. [PMID: 37308631 DOI: 10.1007/s11356-023-27940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Concentration polarization, which creates a thin boundary layer along the membranes in electrochemical reactors and electrodialysis-related processes, is one of the main issues. Membrane spacers provide swirling motion in the stream and distribute fluid toward the membrane, which effectively breaks the polarization layer and maximizes flux steadily. Membrane spacers and the spacer-bulk attack angle are reviewed systematically in the current study. The study then in-depth reviews a ladder-type configuration composed of longitudinal (0° attack angle) and transverse (90° attack angle) filaments, and its effects on solution flow direction and hydrodynamics. The review discovered that, at the tradeoff of high-pressure losses, a laddered spacer can provide mass transfer and mixing activity along the channel while preserving comparable patterns of concentration near the membrane wall. Pressure losses are driven by a change in the direction of velocity vectors. Dead spots in the spacer design that are created by the large contribution of the spacer manifolds can be reduced using the high-pressure drop. Laddered spacers also permit long, tortuous flow paths, which help to create turbulent flow and prevent concentration polarization. The absence of spacers produces limited mixing and broad polarization effects. A major portion of streamlines changes direction at ladder spacer strands positioned transverse to the main flow by moving in a zigzag manner up and down the filaments of the spacer. Flow at 90° is perpendicular to the transverse wires in [Formula: see text]-coordinate, no change in [Formula: see text]-coordinate.
Collapse
Affiliation(s)
- Sajjad Khudhur Abbas Al-Amshawee
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| | - Ihsan Habib Dakhil
- Department of Chemical Engineering, Al-Muthanna University, Engineering College, 66001, Al-Samawa, Al-Muthanna, Iraq
| |
Collapse
|
4
|
Jiang C, Ma X, Zhang L, Tian L, Li P, Hou Y, Niu QJ. Thin-film composite membranes with programmable in-plane heterostructure for high degree-of-freedom performance control. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
|
6
|
Generous MM, Qasem NA, Akbar UA, Zubair SM. Techno-economic assessment of electrodialysis and reverse osmosis desalination plants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Sutariya B, Raval H. Analytical study of optimum operating conditions in semi-batch closed-circuit reverse osmosis (CCRO). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Alkatheeri A, Rafay R, Alhseinat E, Safieh A, Alnaimat F. Robust Spatial Modeling of Thermodynamic Parameters in a Full-Scale Reverse Osmosis Membrane Channel. ACS OMEGA 2021; 6:12392-12409. [PMID: 34056391 PMCID: PMC8154145 DOI: 10.1021/acsomega.0c04412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Full-scale reverse osmosis (RO) units usually consist of a set of pressure vessels holding up to six (1 m long) membrane modules in series. Since process parameters and water composition change substantially along the filtration channel in full-scale RO units, relevant thermodynamic parameters such as the ion activities and the osmotic coefficient change as well. Understanding these changes will lead to more accurate fouling prediction and to improvement in process and equipment designs. In this article, a rigorous thermodynamic model for RO concentrates in a full-scale module is developed and presented, which is capable of accounting for such changes. The change in concentrate composition due to permeation of water and ions is predicted locally in the membrane filtration channel. The local ionic composition is used to calculate the local activity coefficient and osmotic coefficient along the membrane channel through the Pitzer model for each modeled anion and cation. The approach developed was validated against related literature data, showing that Pitzer coefficient predictions were satisfactory. The spatial variation model was verified experimentally. It was found under the modeled conditions of high recovery that individual solute activity coefficients could be diminished up to 65%, in our case for sulfate, from their initial value from the membrane inlet to the outlet, and the water osmotic coefficient increased 3% as concentrate salinity increased from the membrane inlet to the outlet. Modeled at moderate recovery, the sulfate still achieved a statistically significant drop of 34% and an opposing trend of a decrease of 0.5% for the osmotic coefficient. These variations in internal water chemistry along the channel can significantly impact predicted recovery, fouling propensity, and permeate quality. Fouling prediction with our approach was also assessed through a theoretical fouling index to demonstrate the significance of ion activity over concentration-based calculations. Additionally, data from a pilot plant RO filtration channel was used to carry out a sensitivity analysis to show the capability of the developed model.
Collapse
Affiliation(s)
- Afra Alkatheeri
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ramis Rafay
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center
for Advanced Membranes and Water Technologies, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmad Safieh
- Research
& Development Department, Dubai Electricity
& Water Authority (DEWA), P.O. Box
564, Dubai, United Arab Emirates
| | - Fadi Alnaimat
- Mechanical
Engineering Department, United Arab Emirates
University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Correlations for Concentration Polarization and Pressure Drop in Spacer-Filled RO Membrane Modules Based on CFD Simulations. MEMBRANES 2021; 11:membranes11050338. [PMID: 34062924 PMCID: PMC8147287 DOI: 10.3390/membranes11050338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
Empirical correlations for mass transfer coefficient and friction factor are often used in process models for reverse osmosis (RO) membrane systems. These usually involve four dimensionless groups, namely Reynolds number (Re), Sherwood number (Sh), friction factor (f), and Schmidt number (Sc), with the associated coefficients and exponents being obtained by fitting to experimental data. However, the range of geometric and operating conditions covered by the experiments is often limited. In this study, new dimensionless correlations for concentration polarization (CP) modulus and friction factor are presented, which are obtained by dimensional analysis and using simulation data from computational fluid dynamics (CFD). Two-dimensional CFD simulations are performed on three configurations of spacer-filled channels with 76 combinations of operating and geometric conditions for each configuration, covering a broad range of conditions encountered in RO membrane systems. Results obtained with the new correlations are compared with those from existing correlations in the literature. There is good consistency in the predicted CP with mean discrepancies less than 6%, but larger discrepancies for pressure gradient are found among the various friction factor correlations. Furthermore, the new correlations are implemented in a process model with six spiral wound modules in series and the predicted recovery, pressure drop, and specific energy consumption are compared with a reference case obtained by ROSA (Reverse Osmosis System Analysis, The Dow Chemical Company). Differences in predicted recovery and pressure drop are up to 5% and 83%, respectively, highlighting the need for careful selection of correlations when using predictive models in process design. Compared to existing mass transfer correlations, a distinct advantage of our correlations for CP modulus is that they can be directly used to estimate the impact of permeate flux on CP at a membrane surface without having to resort to the film theory.
Collapse
|
10
|
Castelletto S, Boretti A. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Adv 2021; 11:7981-8002. [PMID: 35423337 PMCID: PMC8695175 DOI: 10.1039/d1ra00278c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The potential of novel 2D carbon materials such as nanoporous single-layer graphene and multilayer graphene oxide membranes is based on their possible advantages such as high water permeability, high selectivity capable of rejecting monovalent ions, with high salt rejection, reduced fouling, and high chemical and physical stability. Here we review how the field has advanced in the study of their performances in various desalination approaches such as reverse osmosis, forward osmosis, nanofiltration, membrane distillation, and solar water purification. The research on making high-performance graphene membranes which started with reverse osmosis applications is seemingly evolving towards other directions.
Collapse
|
11
|
Renewable energy powered membrane technology: Impact of osmotic backwash on scaling during solar irradiance fluctuation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Integration of a Combined Cycle Power Plant with MED-RO Desalination Based on Conventional and Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses. Processes (Basel) 2020. [DOI: 10.3390/pr9010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ever-increasing world population, change in lifestyle, and limited natural water and energy resources have made industrial seawater desalination plants the leading contenders for cost-efficient freshwater production. In this study, the integration of a combined cycle power plant (CCPP) with multi-effect distillation (MED) and reverse osmosis (RO) desalination units is investigated through comprehensive conventional and advanced exergy, exergoeconomic, and exergoenvironmental analyses. Firstly, the thermodynamic modelling of the CCPP is performed by using a mathematical programming procedure. Then, a mathematical model is developed for the integration of the existing CCPP plant with MED and RO desalination units. Finally, conventional and advanced exergy, exergoeconomic, and exergoenvironmental analyses are carried out to assess the main performance parameters of the integrated CCPP and MED-RO desalination system, as well as to identify potential technical, economic, and environmental improvements. A case study is presented based on the Shahid Salimi Neka power plant located at the north of Iran along the Caspian Sea. The mathematical modelling approach for the integrated CCPP and MED-RO desalination system is solved in MATLAB, and the results are validated via Thermoflex software. The results reveal an increase of 3.79% in fuel consumption after the integration of the CCPP with the desalination units. The exergy efficiency of the integrated system is 42.7%, and the highest cost of exergy destruction of the combustion chamber is 1.09 US$ per second. Economic and environmental analyses of the integrated system also show that gas turbines present the highest investment cost of 0.047 US$ per second. At the same time, MED exhibits the highest environmental impact rate of 0.025 points per second.
Collapse
|
13
|
Zhang Y, Mu T, Huang M, Chen G, Cai T, Chen H, Meng L, Luo X. Nanofiber composite forward osmosis (NCFO) membranes for enhanced antibiotics rejection: Fabrication, performance, mechanism, and simulation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
A systematic optimization of Internally Staged Design (ISD) for a full-scale reverse osmosis process. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Gu B, Xu XY, Adjiman CS. A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details. Comput Chem Eng 2017. [DOI: 10.1016/j.compchemeng.2016.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
She Q, Wang R, Fane AG, Tang CY. Membrane fouling in osmotically driven membrane processes: A review. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.040] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Lopes GH, Ibaseta N, Guichardon P, Haldenwang P. Predicting Permeate Fluxes and Rejection Rates in Reverse Osmosis and Tight-Nanofiltration Processes. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201400654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Feinberg BJ, Ramon GZ, Hoek EM. Scale-up characteristics of membrane-based salinity-gradient power production. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
|
20
|
|
21
|
Improving performance of spiral wound RO elements by in situ concentration polarization-enhanced radical graft polymerization. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.02.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
A total salt balance model for concentration polarization in crossflow reverse osmosis channels with shear flow. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Lee YG, Lee YS, Kim DY, Park M, Yang DR, Kim JH. A fouling model for simulating long-term performance of SWRO desalination process. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Thermodynamic Analysis of a Reverse Osmosis Desalination Unit with Energy Recovery System. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.01.1220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Gu B, Kim D, Kim J, Yang D. Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ali MAH, Ajbar A, Ali E, Alhumaizi K. Study of cyclic operation of RO desalination process. CAN J CHEM ENG 2011. [DOI: 10.1002/cjce.20407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
|
28
|
|
29
|
Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. J Memb Sci 2007. [DOI: 10.1016/j.memsci.2007.08.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Tay KG, Song L. Differential pressure in membrane channel caused by foulant capture onto spacers. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2007; 79:788-94. [PMID: 17710923 DOI: 10.2175/106143007x156655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Feed spacers in spiral-wound reverse osmosis membrane modules are highly susceptible to deposition or attachment of suspended particulates and organic matters in the feed stream. This type of fouling can cause a significant pressure drop along the membrane channel (differential pressure) without much effect on the average permeate flux. In practical applications, membrane cleaning is often triggered when the differential pressure in a membrane channel exceeds a threshold value. A mathematical model was developed to simulate the development of differential pressure in the feed channel resulting from foulant capture by the feed spacers. Simulations were carried out to investigate and demonstrate the effect of various parameters on differential pressures in the membrane channel. Differential pressures observed in a two-stage reverse osmosis water reclamation plant were simulated with the model, and the results showed that the model could adequately describe the increase of differential pressure with operating time in the reverse osmosis plant.
Collapse
Affiliation(s)
- Kwee Guan Tay
- Division of Environmental Science & Engineering, National University of Singapore
| | | |
Collapse
|