1
|
Torsello M, Animini M, Gualandi C, Perut F, Pollicino A, Boi C, Focarete ML. Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. MEMBRANES 2024; 14:206. [PMID: 39452818 PMCID: PMC11509411 DOI: 10.3390/membranes14100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Electrospun regenerated cellulose (RC) nanofiber membranes were prepared starting from cellulose acetate (CA) with different degrees of substitution. The process was optimized to obtain continuous and uniformly sized CA fibers. After electrospinning, the CA membranes were heat-treated to increase their tensile strength before deacetylation to obtain regenerated cellulose (RC). Affinity membranes were obtained by functionalization, exploiting the hydroxyl groups on the cellulose backbone. 1,4-Butanediol-diglycidyl ether was used to introduce epoxy groups onto the membrane, which was further bioconjugated with the anti-CD63 antibody targeting the tetraspanin CD63 on the extracellular vesicle membrane surface. The highest ligand density was obtained with an anti-CD63 antibody concentration of 6.4 µg/mL when bioconjugation was performed in carbonate buffer. The resulting affinity membrane was tested for the adsorption of extracellular vesicles (EVs) from human platelet lysate, yielding a very promising binding capacity above 10 mg/mL and demonstrating the suitability of this approach.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Margherita Animini
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Chiara Gualandi
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, V.le A.Doria 6, 95125 Catania, Italy;
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
2
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Wang Y, Gu L, Xu F, Xin F, Ma J, Jiang M, Fang Y. Chemoenzymatic Synthesis of Branched Glycopolymer Brushes as the Artificial Glycocalyx for Lectin Specific Binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4445-4452. [PMID: 30845797 DOI: 10.1021/acs.langmuir.8b03704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The artificial glycocalyx fabricated by carbohydrates is of interest because it provides a platform to simulate the cell membranes that widely exist in the nature, and thus enable extensive applications to be implantable in bioengineering. Here, we present a green strategy combining two polymerization techniques, surface-initiated atom transfer radical polymerization (SI-ATRP) and enzyme-catalyzed elongation of polysaccharide, for fabricating densely packed branched glycopolymer brushes on the gold surface as the artificial glycocalyx. In this strategy, SI-ATRP is first performed to graft a linear polymer chain for anchoring maltose, which can be used as an enzyme acceptor for dextransucrase (DSase). Under DSase, a branched polysaccharide is efficiently formed through elongation of a sucrose substrate. Undoubtedly, enzymatic transglycosylation has unique advantages, such as being green, regio-, and stereo-selective, etc. The process of DSase-catalyzed polysaccharide is well monitored by a quartz crystal microbalance, and the grafting density of the glycopolymer brushes is estimated to be 0.7 chain nm-2 with 23.0 nm dry thickness. The polysaccharide brushes display a branched structure consisting of α-d-glucose residues with 5% of α-1,3-linked shorter chain branches, and the branched structure is well characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, Fourier transform infrared/mirror reflection, water contact angle analysis, and atomic force microscopy. Compared with the linear maltose-anchored brushes, the branched glycopolymer analog prepared here shows high specific binding capacity of concanavalin A recognition, which should be of use in biomedical application.
Collapse
|
4
|
He S, Simpson BK, Sun H, Ngadi MO, Ma Y, Huang T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit Rev Food Sci Nutr 2017; 58:70-83. [PMID: 26479307 DOI: 10.1080/10408398.2015.1096234] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Legume lectins are carbohydrate-binding proteins of non-immune origin. Significant amounts of lectins have been found in Phaseolus vulgaris beans as far back as in the last century; however, many questions about their potential biological roles still remain obscure. Studies have shown that lectins are anti-nutritional factors that can cause intestinal disorders. Owing to their ability to act as toxic allergens and hemagglutinins, the Phaseolus vulgaris lectins are of grave concern for human health and safety. Nonetheless, their potential beneficial health effects, such as anti-cancer, anti-human immunodeficiency virus (anti-HIV), anti-microbial infection, preventing mucosal atrophy, reducing type 2 diabetes and obesity, promoting nutrients absorption and targeting drugs, are of immense interest. The significance of Phaseolus vulgaris lectins in biological researches and the potential biomedical applications have placed tremendous emphasis on the development of purification strategies to obtain the protein in pure and stable forms. These purification strategies entail considerations such as effects of proteolysis, heating, gamma radiation, and high-hydrostatic-pressure that can have crucial outcomes in either eliminating or improving bioactivities of the lectins. Thus, up-to-date research findings of Phaseolus vulgaris lectins on different aspects such as anti-nutritional and health impacts, purification strategies and novel processing trends, are systematically reviewed.
Collapse
Affiliation(s)
- Shudong He
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China.,b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China.,c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Benjamin K Simpson
- c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Hanju Sun
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China
| | - Michael O Ngadi
- d Department of Bioresource Engineering , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Ying Ma
- b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Tiemin Huang
- e Advanced Electrophoresis Solutions Ltd. , Cambridge , Ontario , Canada
| |
Collapse
|
5
|
Chenette HCS, Husson SM. Membrane adsorbers comprising grafted glycopolymers for targeted lectin binding. J Appl Polym Sci 2014; 132:1-7. [PMID: 25866416 DOI: 10.1002/app.41437] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work details the design and testing of affinity membrane adsorbers for lectin purifications that incorporate glucose-containing glycopolymers. It is the selective interaction between the sugar residues of the glycopolymer and the complementary carbohydrate-binding domain of the lectin that provides the basis for the isolation and purification of lectins from complex biological media. The design approach used in these studies was to graft glycopolymer 'tentacles' from macroporous regenerated cellulose membranes by atom transfer radical polymerization. As shown in earlier studies, this design approach can be used to prepare high-productivity membrane adsorbers. The model lectin, concanavalin A (conA), was used to evaluate membrane performance in bind-and-elute purification, using a low molecular weight sugar for elution. The membrane capacity for binding conA was measured at equilibrium and under dynamic conditions using flow rates of 0.1 and 1.0 mL/min. The first Damkohler number was estimated to relate the adsorption rate to the convective mass transport rate through the membrane bed. It was used to assess whether adsorption kinetics or mass transport contributed the primary limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherent rate of adsorption of conA onto the glycopolymer.
Collapse
Affiliation(s)
- Heather C S Chenette
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Affiliation(s)
- Meng-Xin Hu
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou 310035 China
| | - Yan Fang
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Kang Xu
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
7
|
Nascimento KS, Cunha AI, Nascimento KS, Cavada BS, Azevedo AM, Aires-Barros MR. An overview of lectins purification strategies. J Mol Recognit 2012; 25:527-41. [DOI: 10.1002/jmr.2200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kelany S. Nascimento
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico; Technical University of Lisbon; Av. Rovisco Pais; 1049-001; Lisbon; Portugal
| | - Ana I. Cunha
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico; Technical University of Lisbon; Av. Rovisco Pais; 1049-001; Lisbon; Portugal
| | - Kyria S. Nascimento
- Biochemistry and Molecular Biology Department; Federal University of Ceará (UFC); CEP 60.455-970; Fortaleza; Ceará; Brazil
| | - Benildo S. Cavada
- Biochemistry and Molecular Biology Department; Federal University of Ceará (UFC); CEP 60.455-970; Fortaleza; Ceará; Brazil
| | - Ana M. Azevedo
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico; Technical University of Lisbon; Av. Rovisco Pais; 1049-001; Lisbon; Portugal
| | - Maria Raquel Aires-Barros
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico; Technical University of Lisbon; Av. Rovisco Pais; 1049-001; Lisbon; Portugal
| |
Collapse
|
8
|
Opitz L, Lehmann S, Reichl U, Wolff MW. Sulfated membrane adsorbers for economic pseudo-affinity capture of influenza virus particles. Biotechnol Bioeng 2009; 103:1144-54. [PMID: 19449393 DOI: 10.1002/bit.22345] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture-based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture-derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell-derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM-adsorbers were compared directly to column-based Cellufine sulfate and commercially available cation-exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM-capture step resulted in a higher reduction of dsDNA compared to the tested cation-exchange membrane adsorbers. The productivity of the SCM-based unit operation could be significantly improved by a 30-fold increase in volumetric flow rate during adsorption compared to the bead-based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell-derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM-adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine sulfate.
Collapse
Affiliation(s)
- Lars Opitz
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse. 1, 39106 Magdeburg, Germany
| | | | | | | |
Collapse
|
9
|
Hu MX, Wan LS, Xu ZK. Multilayer adsorption of lectins on glycosylated microporous polypropylene membranes. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Perçin I, Yavuz H, Aksöz E, Denizli A. N-acetyl-D-galactosamine-specific lectin isolation from soyflour with poly(HPMA-GMA) beads. J Appl Polym Sci 2009. [DOI: 10.1002/app.29054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Jain P, Baker GL, Bruening ML. Applications of polymer brushes in protein analysis and purification. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:387-408. [PMID: 20636068 DOI: 10.1146/annurev-anchem-060908-155153] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review examines the application of polymer brush-modified flat surfaces, membranes, and beads for protein immobilization and isolation. Modification of porous substrates with brushes yields membranes that selectively bind tagged proteins to give 99% pure protein at capacities as high as 100 mg of protein per cubic centimeter of membrane. Moreover, enrichment of phosphopeptides on brush-modified matrix-assisted laser desorption/ionization (MALDI) plates allows detection and characterization of femtomole levels of phosphopeptides by MALDI mass spectrometry. Because swollen hydrophilic brushes can resist nonspecific protein adsorption while immobilizing a high density of proteins, they are attractive as substrates for protein microarrays. This review highlights the advantages of polymer brush-modified surfaces over self-assembled monolayers and identifies some research needs in this area.
Collapse
Affiliation(s)
- Parul Jain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
12
|
Boi C, Algeri C, Sarti GC. Preparation and characterization of polysulfone affinity membranes bearing a synthetic peptide ligand for the separation of murine immunoglobulins. Biotechnol Prog 2008; 24:1304-13. [DOI: 10.1002/btpr.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|