1
|
Schroën K, Shen X, Hasyyati FI, Deshpande S, van der Gucht J. From theoretical aspects to practical food Pickering emulsions: Formation, stabilization, and complexities linked to the use of colloidal food particles. Adv Colloid Interface Sci 2024; 334:103321. [PMID: 39486347 DOI: 10.1016/j.cis.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
We noticed that in literature, the term Pickering emulsion (PE) is used as soon as ingredients contain particles, and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-stabilized emulsions leads to the conclusion that the desorption energy of particles is generally high making particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or systems with very low interfacial tension. Particles used in food and biobased applications are soft, can deform when adsorbed, and most probably have molecules extending into both phases thus increasing desorption energy. Besides, surface-active components will be present either in the ingredients or generated by the emulsification process used, which will reduce the energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we describe the relative relevance of these aspects, and how to distinguish them in practice. Practical food emulsions may derive part of their stability from the presence of particles, but most likely have mixed interfaces, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by connecting the particles or creating network that spans the product, albeit this goes beyond classical Pickering stabilization. Through the architecture of PEs, special functionalities can be created, such as reduction of lipid oxidation, and controlled release features.
Collapse
Affiliation(s)
- Karin Schroën
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands..
| | - Xuefeng Shen
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Fathinah Islami Hasyyati
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Siddharth Deshpande
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Jasper van der Gucht
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
2
|
Chen Y, Liu X, Liu G, Chang S, Hu J. Oriented Interpenetrating Capillary Network with Surface Engineering by Porous ZnO from Wood for Membrane Emulsification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2113. [PMID: 38730920 PMCID: PMC11084715 DOI: 10.3390/ma17092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Membrane emulsification technology has garnered increasing interest in emulsion preparation due to controllable droplet size, narrower droplet size distribution, low energy consumption, simple process design and excellent reproducibility. Nevertheless, the pore structure and surface engineering in membrane materials design play a crucial role in achieving high-quality emulsions with high throughput simultaneously. In this work, an oriented interpenetrating capillary network composed of highly aligned and interconnected wood cell lumens has been utilized to fabricate an emulsion membrane. A novel honeycomb porous ZnO layer obtained by a seed prefabrication-hydrothermal growth method was designed to reconstruct wood channel surfaces for enhanced microfluid mixing. The results show that through the unique capillary mesh microstructure of wood, the emulsion droplets were smaller in size, had narrower pore-size distribution, and were easy to obtain under high throughput conditions. Meanwhile, a well-designed ZnO layer could further improve the emulsion quality of a wood membrane, while the emulsifying throughput is still maintained at a higher level. This demonstrates that the convection process of the microfluid in these wood capillary channels was intensified markedly. This study not only develops advanced membrane materials in emulsion preparation, but also introduces a brand-new field for functional applications of wood.
Collapse
Affiliation(s)
- Yaodong Chen
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| | - Xiaolin Liu
- Hunan Lintec Co., Ltd., Changsha 410600, China;
| | - Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| | - Shanshan Chang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| | - Jinbo Hu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (S.C.)
| |
Collapse
|
3
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Giefer P, Bäther S, Kaufmes N, Kieserling H, Heyse A, Wagemans W, Barthel L, Meyer V, Schneck E, Fritsching U, Wagemans AM. Characterization of β-lactoglobulin adsorption on silica membrane pore surfaces and its impact on membrane emulsification processes. J Colloid Interface Sci 2023; 652:1074-1084. [PMID: 37647716 DOI: 10.1016/j.jcis.2023.08.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization). The β-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of β-lactoglobulin. Although the conformation of the adsorbed β-lactoglobulin layer varies with membrane treatment and the solvent properties, the β-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after β-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.
Collapse
Affiliation(s)
- Patrick Giefer
- Leibniz Institute for Materials Engineering-IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; University of Bremen, Particles and Process Engineering, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Sabrina Bäther
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nadine Kaufmes
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Helena Kieserling
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anja Heyse
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Barthel
- Technische Universität Berlin, Institute of Biotechnology, Department of Applied and Molecular Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vera Meyer
- Technische Universität Berlin, Institute of Biotechnology, Department of Applied and Molecular Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Emanuel Schneck
- Technical University of Darmstadt, Department of Physics, 64277 Darmstadt, Germany
| | - Udo Fritsching
- Leibniz Institute for Materials Engineering-IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; University of Bremen, Particles and Process Engineering, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Anja Maria Wagemans
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Department of Food Biosciences, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
5
|
Mugabi J, Jeong JH. Effect of Continuous and Discontinuous Droplet-Size Distributions on the Viscosity of Concentrated Emulsions in Premix Membrane Emulsification. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jophous Mugabi
- Thermal-Fluid Energy Machine Lab., Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| | - Jae-Ho Jeong
- Thermal-Fluid Energy Machine Lab., Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| |
Collapse
|
6
|
Li R, Kobayashi I, Zhang Y, Neves MA, Uemura K, Nakajima M. Preparation of monodisperse water-in-oil emulsions using microchannel homogenization. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2160852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ran Li
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Isao Kobayashi
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yanru Zhang
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marcos A. Neves
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kunihiko Uemura
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Ge XH, Huang XL, Huang SZ, Zhang HF, Wang XD, Ye CS, Qiu T, Xu K. Enhanced solvent extraction in a serial converging-diverging microchannel at high injection ratio. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Li X, You B, Shum HC, Chen CH. Future foods: Design, fabrication and production through microfluidics. Biomaterials 2022; 287:121631. [PMID: 35717791 DOI: 10.1016/j.biomaterials.2022.121631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Many delicious foods are soft matter systems with health ingredients and unique internal structures that provide rich nutrition, unique textures, and popular flavors. Obtaining these special properties in food products usually requires specialized processes. Microfluidic technologies have been developed to physically manipulate liquids to produce a broad range of microunits, providing a suitable approach for precise fabrication of functional biomaterials with desirable interior structures in a bottom-up fashion. In this review, we present how microfluidics has been applied to produce gel-based structures and highlight their use in fabricating novel foods, focusing on, among others, cultured meat as a rapidly growing field in food industry. We first discuss the behaviors of food liquids in microchannels for fluidic structure design. Then, different types of microsized building blocks with specific geometries fabricated through microfluidics are introduced, including particles (point), fibers (line), and sheets (plane). These well-defined units can encapsulate or interact with cells, forming microtissues to construct meat products with desirable architectures. After that, we review approaches to scale up microfluidic devices for mass production of the hydrogel building blocks and highlight the challenges associated with bottom-up food production.
Collapse
Affiliation(s)
- Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Baihao You
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China; Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China; City University of Hong Kong, Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen, China.
| |
Collapse
|
9
|
Jiang T, Charcosset C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil on the chemical stability of curcumin. Food Res Int 2022; 157:111475. [DOI: 10.1016/j.foodres.2022.111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/27/2022]
|
10
|
Mitkowski PT, Szaferski W, Nędzarek A, Sales-Cruz M. Design of membrane systems. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Membrane separation systems have been used in process industry since decades; however, their designs are based mainly on experienced-based and use of trial-and-error approach, especially in case of membrane selection. This chapter reviews recent advancements in the design of membrane systems used either for separation or creation of mixtures from the perspective of industry 4.0 and data management. Additionally, computer-aided design tools have been reviewed with aim of possible use in the design of membrane separation systems.
Collapse
Affiliation(s)
| | - Waldemar Szaferski
- Faculty of Chemical Technology, Poznan University of Technology , Poznań , Poland
| | - Arkadiusz Nędzarek
- Department of Aquatic Bioengineering and Aquaculture , Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology , Szczecin , Poland
| | - Mauricio Sales-Cruz
- Process and Technology Department , Autonomous Metropolitan University Cuajimalpa Campus , Mexico City , Mexico
| |
Collapse
|
11
|
Relationship between the continuous phase viscosity and the membrane permeation rate in premix membrane emulsification using Shirasu porous glass membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Wang Y, Jiang Q, Jing W, Zhong Z, Xing W. Pore structure and surface property design of silicon carbide membrane for water-in-oil emulsification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
|
14
|
|
15
|
Syed UT, Leonardo IC, Mendoza G, Gaspar FB, Gámez E, Huertas RM, Crespo MT, Arruebo M, Crespo JG, Sebastian V, Brazinha C. On the role of components of therapeutic hydrophobic deep eutectic solvent-based nanoemulsions sustainably produced by membrane-assisted nanoemulsification for enhanced antimicrobial activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Reducing the γ'-Particle Size in CMSX-4 for Membrane Development. MATERIALS 2022; 15:ma15041320. [PMID: 35207855 PMCID: PMC8877186 DOI: 10.3390/ma15041320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Colloidal emulsions for lipophilic drugs can be fabricated using premix membrane emulsification. The state of the art is the application of membranes made from, for example, polycarbonate or polyester, which, however, are prone to fouling and cause waste, due to the low number of cycles. With the use of metallic membranes made from the nickel based single crystalline superalloy CMSX-4, these key disadvantages are eliminated. However, instead, the pore size and the resulting droplet size distribution need to be adjusted and improved. This can be realized by tailoring the size of the γ′-particles, which is controllable by the time and temperature used during precipitation heat treatment and the quenching method after homogenization heat treatment. Therefore, we utilized different heat treatment protocols, varying the cooling rate (water quenching and air cooling) after homogenization heat treatment and the holding time and temperature during precipitation heat treatment. Then, we investigated the γ/γ′-microstructure, including the γ′-morphology and γ′-particle size. We show that water quenching has a significant impact on the γ/γ′-microstructure and often leads to irregular-shaped and poorly aligned γ′-particles after precipitation heat treatment. In comparison, air cooling, followed by a subsequent precipitation heat treatment, results in well-aligned and cubic shaped γ′-particles and is, therefore, favorable for membrane fabrication. A reduction in precipitation temperature leads to morphology changes to the γ′-particles. A reduction of the holding time during precipitation heat treatment diminishes the γ′-particle growth, resulting in smaller γ′-particles. Additionally, a suitable heat treatment protocol for membrane fabrication was identified with a γ′-edge length of 224 ± 52 nm and well-aligned, cubic shaped γ′-particles.
Collapse
|
17
|
Reis DR, Ambrosi A, Luccio MD. Encapsulated essential oils: a perspective in food preservation. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
18
|
Wang J, Ballon A, Schroën K, de Lamo-Castellví S, Ferrando M, Güell C. Polyphenol Loaded W 1/O/W 2 Emulsions Stabilized with Lesser Mealworm ( Alphitobius diaperinus) Protein Concentrate Produced by Membrane Emulsification: Stability under Simulated Storage, Process, and Digestion Conditions. Foods 2021; 10:2997. [PMID: 34945549 PMCID: PMC8702022 DOI: 10.3390/foods10122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions are complex delivery systems for polyphenols amongst other bio-actives. To stabilize the oil-water interphase, dairy proteins are commonly employed, which are ideally replaced by other, more sustainable sources, such as insect proteins. In this study, lesser mealworm (Alphitobius diaperinus) protein concentrate (LMPC) is assessed and compared to whey protein (WPI) and pea protein (PPI), to stabilize W1/O/W2 emulsions and encapsulate a commercial polyphenol. The results show that LMPC is able to stabilize W1/O/W2 emulsions comparably to whey protein and pea protein when using a low-energy membrane emulsification system. The final droplet size (d4,3) is 7.4 μm and encapsulation efficiency is between 72 and 74%, regardless of the protein used. Under acidic conditions, the LMPC shows a similar performance to whey protein and outperforms pea protein. Under alkaline conditions, the three proteins perform similarly, while the LMPC-stabilized emulsions are less able to withstand osmotic pressure differences. The LMPC stabilized emulsions are also more prone to droplet coalescence after a freeze-thaw cycle than the WPI-stabilized ones, but they are the most stable when exposed to the highest temperatures tested (90 °C). The results show LMPC's ability to stabilize multiple emulsions and encapsulate a polyphenol, which opens the door for application in foods.
Collapse
Affiliation(s)
- Junjing Wang
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Aurélie Ballon
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Karin Schroën
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
| | - Sílvia de Lamo-Castellví
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Montserrat Ferrando
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Carme Güell
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| |
Collapse
|
19
|
Preparation of monodispersed emulsions by premix membrane emulsification without repetitive permeation: Influence of membrane permeation rate (flux) and emulsion viscosity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
El-Hawari L, Bunjes H. Premix Membrane Emulsification: Preparation and Stability of Medium-Chain Triglyceride Emulsions with Droplet Sizes below 100 nm. Molecules 2021; 26:6029. [PMID: 34641572 PMCID: PMC8512003 DOI: 10.3390/molecules26196029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Premix membrane emulsification is a promising method for the production of colloidal oil-in-water emulsions as drug carrier systems for intravenous administration. The present study investigated the possibility of preparing medium-chain triglyceride emulsions with a mean particle size below 100 nm and a narrow particle size distribution using sucrose laurate as an emulsifier. To manufacture the emulsions, a coarse pre-emulsion was repeatedly extruded through alumina membranes (Anodisc™) of 200 nm, 100 nm and 20 nm nominal pore size. When Anodisc™ membranes with 20 nm pore size were employed, nanoemulsions with z-average diameters of about 50 nm to 90 nm and polydispersity indices smaller than 0.08 could be obtained. Particle growth due to Ostwald ripening was observed over 18 weeks of storage. The Ostwald ripening rate linearly depended on the emulsifier concentration and the concentration of free emulsifier, indicating that micelles in the aqueous phase accelerated the Ostwald ripening process. Long-term stability of the nanoemulsions could be achieved by using a minimised emulsifier concentration or by osmotic stabilisation with soybean oil added in a mass ratio of 1:1 to the lipid phase.
Collapse
Affiliation(s)
- Lara El-Hawari
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany;
- Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Straße 35a, D-38106 Braunschweig, Germany
| | - Heike Bunjes
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany;
- Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Straße 35a, D-38106 Braunschweig, Germany
| |
Collapse
|
21
|
Fan Z, Wang J, Wang D, Lu S, Zhang Y. Experimental Study on the Generation, Coulomb split and Movement Characteristics of Charged Droplets. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Black Soldier Fly ( Hermetia illucens) Protein Concentrates as a Sustainable Source to Stabilize O/W Emulsions Produced by a Low-Energy High-Throughput Emulsification Technology. Foods 2021; 10:foods10051048. [PMID: 34064662 PMCID: PMC8151181 DOI: 10.3390/foods10051048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/14/2023] Open
Abstract
There is a pressing need to extend the knowledge on the properties of insect protein fractions to boost their use in the food industry. In this study several techno-functional properties of a black soldier fly (Hermetia illucens) protein concentrate (BSFPC) obtained by solubilization and precipitation at pH 4.0–4.3 were investigated and compared with whey protein isolate (WPI), a conventional dairy protein used to stabilize food emulsions. The extraction method applied resulted in a BSFPC with a protein content of 62.44% (Kp factor 5.36) that exhibited comparable or higher values of emulsifying activity and foamability than WPI for the same concentrations, hence, showing the potential for emulsion and foam stabilization. As for the emulsifying properties, the BSFPC (1% and 2%) showed the capacity to stabilize sunflower and lemon oil-in-water emulsions (20%, 30%, and 40% oil fraction) produced by dynamic membranes of tunable pore size (DMTS). It was proved that BSFPC stabilizes sunflower oil-in-water emulsions similarly to WPI, but with a slightly wider droplet size distribution. As for time stability of the sunflower oil emulsions at 25 °C, it was seen that droplet size distribution was maintained for 1% WPI and 2% BSFPC, while for 1% BSFPC there was a slight increase. For lemon oil emulsions, BSFPC showed better emulsifying performance than WPI, which required to be prepared with a pH 7 buffer for lemon oil fractions of 40%, to balance the decrease in the pH caused by the lemon oil water soluble components. The stability of the emulsions was improved when maintained under refrigeration (4 °C) for both BSFPC and WPI. The results of this work point out the feasibility of using BSFPC to stabilize O/W emulsions using a low energy system.
Collapse
|
24
|
Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels. Adv Colloid Interface Sci 2021; 290:102393. [PMID: 33770649 DOI: 10.1016/j.cis.2021.102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Premix membrane emulsification (PME) is a pressure driven process of droplet breakup, caused by their motion through membrane pores. The process is widely used for high-throughput production of sized-controlled emulsion droplets and microparticles using low energy inputs. The resultant droplet size depends on numerous process, membrane, and formulation factors such as flow velocity in pores, number of extrusions, initial droplet size, internal membrane geometry, wettability of pore walls, and physical properties of emulsion. This paper provides a comprehensive review of different mechanisms of droplet deformation and breakup in membranes with versatile pore morphologies including sintered glass and ceramic filters, SPG and polymeric membranes with sponge-like structures, micro-engineered metallic membranes with ordered straight-through pore arrays, and dynamic membranes composed of unconsolidated particles. Fundamental aspects of droplet motion and breakup in idealized pore networks have also been covered including droplet disruption in T-junctions, channel constrictions, and obstructed channels. The breakup mechanisms due to shear interactions with pore walls and localized shear (direct breaking) or due to interfacial tension effects and Rayleigh-Plateau instability (indirect breaking) are systematically discussed based on recent experimental and numerical studies. Non-dimensional droplet size correlations based on capillary, Weber, and Ohnesorge numbers are also presented.
Collapse
|
25
|
Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02586-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Wang J, Fan Z, Wang D, Lu S, Zhang Y. Coulomb split evolution behavior in different growth stages of droplets. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
|
28
|
The Importance of Interfacial Tension in Emulsification: Connecting Scaling Relations Used in Large Scale Preparation with Microfluidic Measurement Methods. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4040063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper starts with short descriptions of emulsion preparation methods used at large and smaller scales. We give scaling relations as they are generally used, and focus on the central role that interfacial tension plays in these relations. The actual values of the interfacial tension are far from certain given the dynamic behavior of surface-active components, and the lack of measurement methods that can be applied to conditions as they occur during large-scale preparation. Microfluidic techniques are expected to be very instrumental in closing this gap. Reduction of interfacial tension resulting from emulsifier adsorption at the oil-water interface is a complex process that consists of various steps. We discuss them here, and present methods used to probe them. Specifically, methods based on microfluidic tools are of great interest to study short droplet formation times, and also coalescence behavior of droplets. We present the newest insights in this field, which are expected to bring interfacial tension observations to a level that is of direct relevance for the large-scale preparation of emulsions, and that of other multi-phase products.
Collapse
|
29
|
Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
|
31
|
Melich R, Zorgani A, Padilla F, Charcosset C. Preparation of perfluorocarbon emulsions by premix membrane emulsification for Acoustic Droplet Vaporization (ADV) in biomedical applications. Biomed Microdevices 2020; 22:62. [PMID: 32880712 DOI: 10.1007/s10544-020-00504-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perfluorocarbon (PFC) droplets are used in acoustic droplet vaporization (ADV), a phenomenon where droplets vaporize into gas microbubbles under exposure to ultrasound. The size and the size distribution of a phase change contrast agent is an important factor in determining the ADV threshold and the biodistribution. Thus, high throughout manufacturing of uniform-sized droplets, required to maintain spatial control of the vaporization process, remains challenging. This work describes a parametric evaluation of a novel process using premix membrane emulsification (PME) to produce homogeneous PFC emulsions at high rate with moderate pressure using Shirasu Porous Glass (SPG) membranes. In this study, we investigated the effect of several process parameters on the resulting pressure and droplet size: membrane pore size, flow rate, and dispersed phase type. The functionality of the manufactured emulsions for ADV was also demonstrated. Vaporization of the PFC emulsions was obtained using an imaging ultrasound transducer at 7.813 MHz, and the ADV thresholds were determined. Here, the pressure threshold for ADV was determined to be 1.49 MPa for uniform-sized perfluorohexane (PFHex) droplets with a mean size of 1.51 μm and a sharp distribution (CV and span respectively of 20% and 0.6). Thus, a uniform-sized droplet showed a more homogeneous vaporization with a uniform response in the focal region of the transducer. Indeed, polydispersed droplets had a more diffuse response outside the focal region due to the presence of large droplets that vaporize at lower energies. The ADV threshold of uniform-sized PFC droplets was found to decrease with the droplet diameter and the bulk fluid temperature, and to increase with the boiling temperature of PFC and the presence of an oil layer surrounding the PFC core.
Collapse
Affiliation(s)
- Romain Melich
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, LYON, France
| | - Ali Zorgani
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, LYON, France
| | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, LYON, France.
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, USA.
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France.
| |
Collapse
|
32
|
Wang J, Martínez-Hernández A, de Lamo-Castellví S, Romero MP, Kaade W, Ferrando M, Güell C. Low-energy membrane-based processes to concentrate and encapsulate polyphenols from carob pulp. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Zhang X, Qin L, Su J, Sun Y, Zhang L, Li J, Beck-Broichsitter M, Muenster U, Chen L, Mao S. Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur J Pharm Biopharm 2020; 155:139-146. [PMID: 32853695 DOI: 10.1016/j.ejpb.2020.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
Sustained drug delivery is considered as an effective strategy to improve the treatment of local lung diseases. In this context, inhalation administration of large porous microparticles (LPPs) represents promising prospects. However, one major challenge with said delivery technology is to control the drug release pattern (especially to decrease the burst release) while maintaining a low mass density/high porosity, which is of high significance for the aerodynamic behavior of LPP systems. Here, we show how to engineer drug-loaded, biodegradable LPPs with varying microstructure by means of a premix membrane emulsification-solvent evaporation (PME-SE) method using poly(vinyl pyrrolidone) (PVP) as the pore former. The influence of PVP concentration on the physicochemical properties, in-vitro drug release behavior and in-vitro aerodynamic performance of the drug-loaded microparticles was tested. We demonstrated that the PME-SE technique led to LPPs with favorable pore distribution characteristics (i.e., low external but high internal porosity) as a function of the PVP concentration. In general, more PVP conditioned a larger discrepancy of the internal vs. external porosity. When the external porosity of the LPP formulation (15% of PVP during the manufacturing process) was less than 3%, the burst release of the embedded drug was significantly reduced compared to LPPs prepared by a "conventional" emulsification solvent evaporation method. All the formulations prepared by the PME-SE method had aerodynamic properties suitable for inhalation. This is the first report indicating that the microstructure of LPPs can be tailored using the PME-SE technology with PVP as a suitable pore former. Doing so, we designed LPP formulations having full control over the drug release kinetics and aerodynamic behavior.
Collapse
Affiliation(s)
- Xiaofei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaqi Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Uwe Muenster
- Chemical & Pharmaceutical Development, Bayer AG, D-42117 Wuppertal, Germany
| | - Linc Chen
- Chemical and Pharmaceutical Development, Bayer AG, Beijing 100020, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
34
|
Premix membrane emulsification using flat microfiltration inorganic membranes with tailored structure and composition. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Microtechnological Tools to Achieve Sustainable Food Processes, Products, and Ingredients. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09212-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractOne of the major challenges we face as humankind is supplying a growing world population with sufficient and healthy foods. Although from a worldwide perspective sufficient food is produced, locally, the situation can be dire. Furthermore, the production needs to be increased in a sustainable manner for future generations, which also implies prevention of food waste, and making better use of the available resources. How to contribute to this as food technologists is an ultimate question, especially since the tools that can investigate processes at relevant time scales, and dimensions, are lacking. Here we propose the use of microtechnology and show examples of how this has led to new insights in the fields of ingredient isolation (filtration), and emulsion/foam formation, which will ultimately lead to better-defined products. Furthermore, microfluidic tools have been applied for testing ingredient functionality, and for this, various examples are discussed that will expectedly contribute to making better use of more sustainably sourced starting materials (e.g., novel protein sources). This review will wrap up with a section in which we discuss future developments. We expect that it will be possible to link food properties to the effects that foods create in vivo. We thus expand the scope of this review that is technical in nature, toward physiological functionality, and ultimately to rational food design that is targeted to improve human health.
Collapse
|
36
|
Kaade W, Ferrando M, Khanmohammed A, Torras C, De Lamo-Castellví S, Güell C. Low-energy high-throughput emulsification with nickel micro-sieves for essential oils encapsulation. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN. Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Vladisavljević GT. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123709] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Alliod O, Almouazen E, Nemer G, Fessi H, Charcosset C. Comparison of Three Processes for Parenteral Nanoemulsion Production: Ultrasounds, Microfluidizer, and Premix Membrane Emulsification. J Pharm Sci 2019; 108:2708-2717. [DOI: 10.1016/j.xphs.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
40
|
Nauman N, Zaquen N, Junkers T, Boyer C, Zetterlund PB. Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nida Nauman
- Department of Polymer and Process Engineering, University of Engineering and Technology, G.T. Road, 54890 Lahore, Punjab, Pakistan
| | - Neomy Zaquen
- Institute for Materials Research (IMO-IMOMEC), Universiteit Hasselt, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Tanja Junkers
- Institute for Materials Research (IMO-IMOMEC), Universiteit Hasselt, Agoralaan Building D, B-3590 Diepenbeek, Belgium
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, VIC 3800 Melbourne, Australia
| | | | | |
Collapse
|
41
|
Santos J, Calero N, García-Capitán J, Muñoz J. Preparation and characterization of emulgels loaded with sweet fennel oil. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1623688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jenifer Santos
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| | - Nuria Calero
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| | - Julia García-Capitán
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| | - José Muñoz
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| |
Collapse
|
42
|
Han J, Shi J, Xie Z, Xu J, Guo B. Synthesis, Properties of Biodegradable Poly(Butylene Succinate- co-Butylene 2-Methylsuccinate) and Application for Sustainable Release. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1507. [PMID: 31075823 PMCID: PMC6539853 DOI: 10.3390/ma12091507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022]
Abstract
A novel biobased and biodegradable polyester, i.e., poly(butylene succinate-co-butylene 2-methylsuccinate) (P(BS-BMS)) was synthesized by succinic acid (SA), 2-methylsuccinic acid (MSA), and 1,4-butanediol (BDO) via a typically two-step esterification and polycondensation procedure. The chemical structure and macromolecular weight of obtained copolymers were characterized by 1H NMR, 13C NMR, and GPC. The melting temperature and degree of crystallinity were also studied by DSC, and it was found that the values were gradually decreased with increasing of MSA content, while the thermal stability remained almost unchanged which was tested by TGA. In addition, the biodegradation rate of the P(BS-BMS) copolymers could be controlled by adjusting the ratio of SA and MSA, and such biodegradability could make P(BS-BMS) copolymers avoid microplastic pollution which may be brought to the environment for applications in agricultural field. When we applied P(BS-BMS) copolymers as pesticide carriers which were prepared by premix membrane emulsification (PME) method for controlling Avermectin delivery, an improvement of dispersion and utilization of active ingredient was obviously witnessed. It showed a burst release process first followed by a sustained release of Avermectin for a long period, which had a great potential to be an effective and environmental friendly pesticide-release vehicle.
Collapse
Affiliation(s)
- Jiarui Han
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jiaxin Shi
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhining Xie
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jun Xu
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Baohua Guo
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Huynh Mai C, Thanh Diep T, Le TTT, Nguyen V. Advances in colloidal dispersions: A review. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1591970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cang Huynh Mai
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Tung Thanh Diep
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thuy T. T. Le
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
45
|
Mugabi J, Naohiro K, Hiroki Y, Miki M, Igura N, Shimoda M. Preparation of Small Droplet Size Monodispersed Emulsions at High Production Rate by Continuous Intramembrane Premix Emulsification Method. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jophous Mugabi
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Karatani Naohiro
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Yachigo Hiroki
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Masuo Miki
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Noriyuki Igura
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Mitsuya Shimoda
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| |
Collapse
|
46
|
Preparation of oil-in-water nanoemulsions at large-scale using premix membrane emulsification and Shirasu Porous Glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Gehrmann S, Bunjes H. Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification. Eur J Pharm Biopharm 2018; 126:140-148. [DOI: 10.1016/j.ejpb.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
48
|
Berton-Carabin CC, Sagis L, Schroën K. Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions. Annu Rev Food Sci Technol 2018; 9:551-587. [DOI: 10.1146/annurev-food-030117-012405] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Leonard Sagis
- Physics and Physical Chemistry of Foods, Wageningen University, 6708 WG Wageningen, The Netherlands
| | - Karin Schroën
- Food Process Engineering Group, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
49
|
Preparation of Nanoemulsions by Premix Membrane Emulsification: Which Parameters Have a Significant Influence on the Resulting Particle Size? J Pharm Sci 2017; 106:2068-2076. [DOI: 10.1016/j.xphs.2017.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/17/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
|
50
|
Costa ALR, Gomes A, Andrade CCPD, Cunha RL. Emulsifier functionality and process engineering: Progress and challenges. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|