1
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
2
|
Pan F, Li W, Zhang Y, Sun J, Wang M, Wu H, Jiang Z, Lin L, Wang B, Cao X, Zhang P. Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE J 2018. [DOI: 10.1002/aic.16399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Weidong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ye Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
| | - Baoyi Wang
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Xingzhong Cao
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Peng Zhang
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
3
|
Zhao X, Jia N, Cheng L, Liu L, Gao C. Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Pan F, Wang M, Ding H, Song Y, Li W, Wu H, Jiang Z, Wang B, Cao X. Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
|
7
|
Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z. Hybrid membranes for pervaporation separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Ding H, Pan F, Mulalic E, Gomaa H, Li W, Yang H, Wu H, Jiang Z, Wang B, Cao X, Zhang P. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Amaral RA, Borges CP, Habert AC, Mermier NRJD. Dual-Layer Hollow Fibers for Sulfur Removal from Fuels. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Hou Y, Liu M, Huang Y, Zhao L, Wang J, Cheng Q, Niu Q. Gasoline desulfurization by a TiO2-filled ethyl cellulose pervaporation membrane. J Appl Polym Sci 2016. [DOI: 10.1002/app.43409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| | - Min Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| | - Yiqing Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| | - Lili Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| | - Jinfeng Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| | - Qiang Cheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| | - Qingshan Niu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China); Qingdao 266580 People's Republic of China
| |
Collapse
|
12
|
Lu F, Chen Z, Du H, Sun D, Xu X, Kong Y. Micro-phase architectural design of fluorinated ethyl cellulose membranes: towards high permeation flux of pervaporation for gasoline desulfurization. RSC Adv 2016. [DOI: 10.1039/c6ra11108d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A micro-phase architecture of a fluorinated ethyl cellulose membrane was induced by the fluorinated side chains, which disturbs the crystallinity region of EC and highly improves the permeation flux of pervaporation.
Collapse
Affiliation(s)
- Fuwei Lu
- State Key Laboratory of Heavy Oil
- China University of Petroleum
- Qingdao 266555
- P. R. China
- Drilling Engineering Company of Jiangsu Oilfield Service Corporation of Sinopec
| | - Zhaojun Chen
- College of Chemical Engineering
- Qingdao University
- Qingdao 266071
- P. R. China
| | - Hui Du
- State Key Laboratory of Heavy Oil
- China University of Petroleum
- Qingdao 266555
- P. R. China
| | - Deshuai Sun
- College of Chemical Engineering
- Qingdao University
- Qingdao 266071
- P. R. China
| | - Xueqin Xu
- Drilling Engineering Company of Jiangsu Oilfield Service Corporation of Sinopec
- Yangzhou 225009
- P. R. China
| | - Ying Kong
- State Key Laboratory of Heavy Oil
- China University of Petroleum
- Qingdao 266555
- P. R. China
| |
Collapse
|
13
|
Yu S, Pan F, Yang S, Ding H, Jiang Z, Wang B, Li Z, Cao X. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.11.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Zhang W, Wang N, Ji S, Li J. Solution and diffusion properties of organic sulfur in poly[bis(phenoxy)phosphazene] by inverse gas chromatography. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
|
16
|
Deoxygenation performance of polydimethylsiloxane mixed-matrix membranes for dissolved oxygen removal from water. J Appl Polym Sci 2014. [DOI: 10.1002/app.41350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|