1
|
Khan MJ, Wibowo A, Karim Z, Posoknistakul P, Matsagar BM, Wu KCW, Sakdaronnarong C. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries. Polymers (Basel) 2024; 16:443. [PMID: 38337332 DOI: 10.3390/polym16030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Huge amounts of noxious chemicals from coal and petrochemical refineries and pharmaceutical industries are released into water bodies. These chemicals are highly toxic and cause adverse effects on both aquatic and terrestrial life. The removal of hazardous contaminants from industrial effluents is expensive and environmentally driven. The majority of the technologies applied nowadays for the removal of phenols and other contaminants are based on physio-chemical processes such as solvent extraction, chemical precipitation, and adsorption. The removal efficiency of toxic chemicals, especially phenols, is low with these technologies when the concentrations are very low. Furthermore, the major drawbacks of these technologies are the high operation costs and inadequate selectivity. To overcome these limitations, researchers are applying biological and membrane technologies together, which are gaining more attention because of their ease of use, high selectivity, and effectiveness. In the present review, the microbial degradation of phenolics in combination with intensified membrane bioreactors (MBRs) has been discussed. Important factors, including the origin and mode of phenols' biodegradation as well as the characteristics of the membrane bioreactors for the optimal removal of phenolic contaminants from industrial effluents are considered. The modifications of MBRs for the removal of phenols from various wastewater sources have also been addressed in this review article. The economic analysis on the cost and benefits of MBR technology compared with conventional wastewater treatments is discussed extensively.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-89122 Örnsköldsvik, Sweden
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Zhang W, Ge W, Li M, Li S, Jiang M, Zhang X, He G. Short review on liquid membrane technology and their applications in biochemical engineering. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Negi H, Verma P, Singh RK. A comprehensive review on the applications of functionalized chitosan in petroleum industry. Carbohydr Polym 2021; 266:118125. [PMID: 34044941 DOI: 10.1016/j.carbpol.2021.118125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
The biomaterials have gained the attention for utilization as sustainable alternatives for petroleum-derived products due to the rapid depletion of petroleum resources and environmental issues. Chitosan is an economical, renewable and abundant polysaccharide having unique molecular characteristics. Chitosan is derived by deacetylation of chitin, a natural polysaccharide existing in insects' exoskeleton, outer shells of crustaceans, and some fungi cell walls. Chitosan is widely used in numerous domains like agriculture, food, water treatment, medicine, cosmetics, fisheries, packaging, and chemical industry. This review aims to account for all the efforts made towards chitosan and its derivatives for utilization in the petroleum industry and related processes including exploration, extraction, refining, transporting oil spillages, and wastewater treatment. This review includes a compilation of various chemical modifications of chitosan to enhance the petroleum field's performance and applicability.
Collapse
Affiliation(s)
- Himani Negi
- Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India; Advanced Crude Oil Research Centre, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248 005, Uttarakhand, India
| | - Priyanka Verma
- School of Environment and Natural Resources, Doon University, Dehradun 248 001, Uttarakhand, India
| | - Raj Kumar Singh
- Advanced Crude Oil Research Centre, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248 005, Uttarakhand, India.
| |
Collapse
|
4
|
Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.024] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Ke Q, Zhang Y, Wu X, Su X, Wang Y, Lin H, Mei R, Zhang Y, Hashmi MZ, Chen C, Chen J. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:185-189. [PMID: 29843091 DOI: 10.1016/j.jenvman.2018.05.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, high-efficient phenol-degrading bacterium Bacillus sp. SAS19 which was isolated from activated sludge by resuscitation-promoting factor (Rpf) addition, were immobilized on porous carbonaceous gels (CGs) for phenol degradation. The phenol-degrading capabilities of free and immobilized Bacillus sp. SAS19 were evaluated under various initial phenol concentrations. The obtained results showed that phenol could be removed effectively by both free and immobilized Bacillus sp. SAS19. Furthermore, for degradation of phenol at high concentrations, long-term utilization and recycling were more readily achieved for immobilized bacteria as compared to free bacteria. Immobilized bacteria exhibited significant increase in phenol-degrading capabilities in the third cycle of recycling and reuse, which demonstrated 87.2% and 100% of phenol (1600 mg/L) degradation efficiency at 12 and 24 h, respectively. The present study revealed that immobilized Bacillus sp. SAS19 can be potentially used for enhanced treatment of synthetic phenol-laden wastewater.
Collapse
Affiliation(s)
- Qian Ke
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yunge Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xilin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yuyang Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Rongwu Mei
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Yu Zhang
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Muhammad Zaffar Hashmi
- Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
6
|
Optimization of extraction conditions using central composite design for the removal of Co(II) from chloride solution by supported liquid membrane. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Parametric studies on an innovative waste vegetable oil-based continuous liquid membrane (WVCLM) for Cu(II) ion separation from aqueous solutions. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Akhlas J, Bertucco A, Ruggeri F, Collodi G. Treatment of wastewater from syngas wet scrubbing: Model-based comparison of phenol biodegradation basin configurations. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junaid Akhlas
- University of Padova; Department of Industrial Engineering; Italy
- NED University of Engineering & Technology; Karachi Pakistan
| | - Alberto Bertucco
- University of Padova; Department of Industrial Engineering; Italy
| | | | | |
Collapse
|
9
|
Yeo BJL, Goh S, Livingston AG, Fane AG. Controlling biofilm development in the extractive membrane bioreactor. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1246569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bibianna J. L. Yeo
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Shuwen Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Andrew G. Livingston
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| | - Anthony G. Fane
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 2016; 101:1857-1868. [DOI: 10.1007/s00253-016-7954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
11
|
Aversa TM, da Silva CMF, da Rocha PCS, Lucas EF. Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:301-307. [PMID: 27494606 DOI: 10.1016/j.jenvman.2016.07.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions.
Collapse
Affiliation(s)
- Thiago Muza Aversa
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Av. República do Paraguai, 120, 25050-100, Duque de Caxias, RJ, Brazil; Federal University of Rio de Janeiro, Science and Technology of Polymers Program, Av. Horácio Macedo, 2030, Block J, Cidade Universitária, 21941-598, Rio de Janeiro, RJ, Brazil.
| | - Carla Michele Frota da Silva
- Federal University of Rio de Janeiro, Science and Technology of Polymers Program, Av. Horácio Macedo, 2030, Block J, Cidade Universitária, 21941-598, Rio de Janeiro, RJ, Brazil
| | - Paulo Cristiano Silva da Rocha
- Federal University of Rio de Janeiro, Science and Technology of Polymers Program, Av. Horácio Macedo, 2030, Block J, Cidade Universitária, 21941-598, Rio de Janeiro, RJ, Brazil
| | - Elizabete Fernandes Lucas
- Federal University of Rio de Janeiro, Science and Technology of Polymers Program, Av. Horácio Macedo, 2030, Block J, Cidade Universitária, 21941-598, Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Metallurgy and Materials Engineering Program, Av. Horácio Macedo, 2030, Block F, Cidade Universitária, 21941-598, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Praveen P, Loh KC. Thermodynamic analysis of Cr(VI) extraction using TOPO impregnated membranes. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:204-210. [PMID: 27131461 DOI: 10.1016/j.jhazmat.2016.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Solid/liquid extraction of Cr(VI) was accomplished using trioctylphosphine oxide impregnated polypropylene hollow fiber membranes. Extraction of 100-500mg/L Cr(VI) by the extractant impregnated membranes (EIM) was characterized by high uptake rate and capacity, and equilibrium was attained within 45min of contact. Extraction equilibrium was pH-dependent (at an optimal pH 2), whereas stripping using 0.2M sodium hydroxide yielded the highest recovery of 98% within 60min. The distribution coefficient was independent of initial Cr(VI) concentration, and the linear distribution equilibrium isotherm could be modeled using Freundlich isotherm. The mass transfer kinetics of Cr(VI) was examined using pseudo-second-order and intraparticle diffusion models and a mass transfer mechanism was deduced. The distribution coefficient increased with temperature, which indicated endothermic nature of the reaction. Enthalpy and entropy change during Cr(VI) extraction were positive and varied in the range of 37-49kJ/mol and 114-155J/mol, respectively. The free energy change was negative, confirming the feasibility and spontaneity of the mass transfer process. Results obtained suggest that EIMs are efficient and sustainable for extraction of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Prashant Praveen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
13
|
Wang T, Zhao H, Wang H, Liu B, Li C. Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment. CHEMOSPHERE 2016; 155:94-99. [PMID: 27108366 DOI: 10.1016/j.chemosphere.2016.03.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
The membrane electro-bioreactor (MEBR) is a novel technology, it treats wastewater by combining membrane filtration, electrokinetic phenomena, and biological processes in one reactor. This paper aims to deal with hard biodegradation and high concentration phenol wastewater. Investigating the influence factors such as initial concentration, voltage, pH value, temperature and mixed liquor suspended solids (MLSS) toward phenol degradation process in electrocatalytic process and membrane bioreactor (MBR), and then apply the optimum conditions in the MEBR system. Results of continuous flow experiments demonstrated that MEBR increased the quality of the treated wastewater than conventional MBR. The above technics followed the zero-order reaction kinetics. The removal efficiency of MEBR was about 11.1% higher for phenol than the sum of the two individual processes. With the help of gas chromatography/mass spectrometry (GC-MS), this qualitative analysis looks at the degradation products of phenol generated in MEBR, through which 2,6-di-tert-butyl-p-benzoquinone was confirmed as the main degradation product.
Collapse
Affiliation(s)
- Tao Wang
- School of Environmental & Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China; State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Huanping Zhao
- School of Environmental & Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hui Wang
- School of Environmental & Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Botan Liu
- School of Material Science & Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chunqing Li
- School of Computer Science & Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
14
|
Praveen P, Loh KC. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes. CHEMOSPHERE 2016; 153:405-413. [PMID: 27031803 DOI: 10.1016/j.chemosphere.2016.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/20/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater.
Collapse
Affiliation(s)
- Prashant Praveen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
15
|
Praveen P, Loh KC. Osmotic membrane bioreactor for phenol biodegradation under continuous operation. JOURNAL OF HAZARDOUS MATERIALS 2016; 305:115-122. [PMID: 26651068 DOI: 10.1016/j.jhazmat.2015.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/03/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600-2000mg/L, and also at spiked concentrations of 2500mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5-6 days at removal rates varying between 2000 and 5500mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2-7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4h. A washing cycle, comprising 1h osmotic backwashing using 0.5M NaCl and 2h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500cm(-1), 1450-1450cm(-1) and 1200-1000cm(-1), indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.
Collapse
Affiliation(s)
- Prashant Praveen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
16
|
Composite hollow fiber membranes with different poly(dimethylsiloxane) intrusions into substrate for phenol removal via extractive membrane bioreactor. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Meng X, Gao C, Wang L, Wang X, Tang W, Chen H. Transport of phenol through polymer inclusion membrane with N,N-di(1-methylheptyl) acetamide as carriers from aqueous solution. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl Microbiol Biotechnol 2015; 99:10345-54. [DOI: 10.1007/s00253-015-6896-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 01/15/2023]
|
19
|
Wang S, Shi D, Yang R, Xu Y, Guo H, Yang X. Solvent extraction of phenol from aqueous solution with benzyl 2-ethylhexyl sulfoxide as a novel extractant. CAN J CHEM ENG 2015. [DOI: 10.1002/cjce.22267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shixiong Wang
- School of Chemical Science and Technology; Yunnan University; Kunming China
| | - Deqiang Shi
- School of Chemical Science and Technology; Yunnan University; Kunming China
| | - Ruisi Yang
- School of Chemical Science and Technology; Yunnan University; Kunming China
| | - Yan Xu
- School of Chemical Science and Technology; Yunnan University; Kunming China
| | - Hong Guo
- School of Chemical Science and Technology; Yunnan University; Kunming China
| | - Xiangjun Yang
- School of Chemical Science and Technology; Yunnan University; Kunming China
| |
Collapse
|
20
|
Praveen P, Nguyen DTT, Loh KC. Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Effects of counter anions on the adsorption properties of 4-methylimidazolium-modified silica materials. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Praveen P, Loh KC. Kinetics modeling of two phase biodegradation in a hollow fiber membrane bioreactor. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yang J, Zhou M, Zhao Y, Zhang C, Hu Y. Electrosorption driven by microbial fuel cells to remove phenol without external power supply. BIORESOURCE TECHNOLOGY 2013; 150:271-277. [PMID: 24177161 DOI: 10.1016/j.biortech.2013.09.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
This work studied the operating parameters (pH, electrolyte concentration, initial phenol concentration, MFCs connection numbers and mode), adsorption isotherms and kinetics of a novel electrosorption driven by microbial fuel cells (MFC-Sorption) to remove phenol without external electric grid energy supply. It proved that high electrolyte concentration and low solution pH promoted the performance of phenol removal. 3 MFCs connections in series achieved a adsorption capacity of 1.76 mmol/g, which was much higher than that in parallel connection (1.46 mmol/g). Well fitted with Langmuir isotherm, the maximum adsorption capacity by MFC-Sorption and electrosorption was observed 48% and 65% higher than that by conventional adsorption. The phenol removal by MFC-Sorption was supposed to be more suitable for a pseudo-second-order kinetics, and with the increase of initial phenol concentration from 20 mg/L to 300 mg/L, the initial adsorption rate increased 26.99-fold. It concluded that the MFC-Sorption system could cost-effectively remove pollutant of phenol.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Research Center for Sustainable Energy & Environmental Technologies, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
24
|
Praveen P, Loh KC. Two-phase biodegradation of phenol in trioctylphosphine oxide impregnated hollow fiber membrane bioreactor. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Praveen P, Loh KC. Trioctylphosphine oxide-impregnated hollow fiber membranes for removal of phenol from wastewater. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.02.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|