1
|
Patil D, Gupta T. Realizing high performance gas filters through nano-particle deposition. Phys Chem Chem Phys 2023; 25:9300-9310. [PMID: 36920157 DOI: 10.1039/d2cp03825k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We have studied the separation of a mixture of hydrogen and methane in equal proportions, using a thin film comprised of 10 layers of nanoparticles deposited layer-wise using our "two-point sticking algorithm" which simulates controlled agglomeration of such nanoparticles. We simulate the process of gas separation using LAMMPS. We have studied the scenario where nanoparticles act like hard spheres, maintaining their shape and size, similar to what has been demonstrated by experiments involving self-assembled nanoparticle thin films. We consider the pressure dependence of the results by working at 3 different initial pressures, 0.1 × P0, 0.5 × P0 and P0, where P0 is the atmospheric pressure. Three different diameters of the nanoparticles, namely 3 nm, 6 nm and 9 nm, are considered, and therefore the overall thickness of the membranes considered ranges from 30 nm to 90 nm. We obtained perm-selectivity values that are significantly higher than the Robeson line for hydrogen-methane gas separation, indicating the novelty and therefore the significant applications of this work. We find that while the permeance of hydrogen remains more or less steady with a ten-fold increase of pressure, the corresponding fall in methane's permeance is very sharp. The fall in methane's permeance with increasing pressure is more pronounced the smaller the nanoparticles of the membrane being used. This results in an even higher selectivity at higher pressure for smaller nanoparticle based membranes.
Collapse
Affiliation(s)
- Dhruva Patil
- Department of Mechanical Engineering, R. V. College of Engineering, Bangalore, 560059, India
| | - Tribikram Gupta
- Department of Physics, R. V. College of Engineering, Bangalore, 560059, India.
| |
Collapse
|
2
|
Zunita M, Natola O W, David M, Lugito G. Integrated metal organic framework/ionic liquid-based composite membrane for CO2 separation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
3
|
Nabais AR, Ahmed S, Younis M, Zhou JX, Pereira JR, Freitas F, Mecerreyes D, Crespo JG, Huang MH, Neves LA, Tomé LC. Mixed matrix membranes based on ionic liquids and porous organic polymers for selective CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
He D, Xu J, Yang Y, Zhu H, Yu M, Li S, Xu S, Zhou J, Wang X. Preparation of biomass-based gas separation membranes from biochar residue obtained by depolymerization of lignin with ZSM-5 to promote a circular bioeconomy. Int J Biol Macromol 2022; 214:45-53. [PMID: 35709873 DOI: 10.1016/j.ijbiomac.2022.06.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Reuse of biochar residues after lignin degradation will not only save costs but also reduce the pollution, protect and improve the environment. In this study, biochar residue (BR) after peanut shell lignin selective depolymerization on ZSM-5 were recycled, and characterized by Scanning Electron Microscopy, Surface area & pore size distribution analyzers, Thermogravimetric Analysis. Subsequently, a series of hybrid matrix membranes were prepared using ethyl cellulose as the matrix and biochar residue after depolymerization under different reaction conditions as the filler. The separation performance of BR/EC membranes for CO2/CH4 mixed gas and CO2/N2 mixed gas was measured. The results showed that the gas separation membranes prepared with biochar residue (3 h, 300 °C) as filler had good gas separation characteristics. The resulting mixed-matrix membrane exhibited a permeability of 66.00 Barrer for CO2 and selectivities of 9.97 for CO2/CH4. Meanwhile, the resulting mixed-matrix membrane exhibited a permeability of 79.53 Barrer for CO2 and selectivities of 20.01 for CO2/N2. Both exceed the upper limit of known pure EC membranes. Therefore, the use of biochar residue after ZSM-5 depolymerization as a filler for gas separation membranes is a feasible way. Furthermore, the membrane is well stabilized, proving its good potential for industrial applications.
Collapse
Affiliation(s)
- Dongpo He
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingyu Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yingying Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongwei Zhu
- Laboratory of Pulp and Papermaking Engineering, Yueyang Forest & Paper Co., Ltd., Hunan 414002, China
| | - Mengtian Yu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shengnan Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuangping Xu
- College of Materials Science and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China.
| | - Jinghui Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Nabais AR, Francisco RO, Alves VD, Neves LA, Tomé LC. Poly(ethylene glycol) Diacrylate Iongel Membranes Reinforced with Nanoclays for CO 2 Separation. MEMBRANES 2021; 11:998. [PMID: 34940499 PMCID: PMC8703618 DOI: 10.3390/membranes11120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
Despite the fact that iongels are very attractive materials for gas separation membranes, they often show mechanical stability issues mainly due to the high ionic liquid (IL) content (≥60 wt%) needed to achieve high gas separation performances. This work investigates a strategy to improve the mechanical properties of iongel membranes, which consists in the incorporation of montmorillonite (MMT) nanoclay, from 0.2 to 7.5 wt%, into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) network containing 60 wt% of the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][TFSI]). The iongels were prepared by a simple one-pot method using ultraviolet (UV) initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) and characterized by several techniques to assess their physico-chemical properties. The thermal stability of the iongels was influenced by the addition of higher MMT contents (>5 wt%). It was possible to improve both puncture strength and elongation at break with MMT contents up to 1 wt%. Furthermore, the highest ideal gas selectivities were achieved for iongels containing 0.5 wt% MMT, while the highest CO2 permeability was observed at 7.5 wt% MMT content, due to an increase in diffusivity. Remarkably, this strategy allowed for the preparation and gas permeation of self-standing iongel containing 80 wt% IL, which had not been possible up until now.
Collapse
Affiliation(s)
- Ana R. Nabais
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Rute O. Francisco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisabon, Portugal;
| | - Luísa A. Neves
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Liliana C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| |
Collapse
|
6
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|
7
|
Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
CO2/CH4 separation characteristics of poly(RTIL)-RTIL-zeolite mixed-matrix membranes evaluated under binary feeds up to 40 bar and 50°C. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
10
|
Rashid TU. Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Han J, Bai L, Jiang H, Zeng S, Yang B, Bai Y, Zhang X. Task-Specific Ionic Liquids Tuning ZIF-67/PIM-1 Mixed Matrix Membranes for Efficient CO2 Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiuli Han
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingbing Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinge Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
|
13
|
Klemm A, Lee YY, Mao H, Gurkan B. Facilitated Transport Membranes With Ionic Liquids for CO 2 Separations. Front Chem 2020; 8:637. [PMID: 33014986 PMCID: PMC7461956 DOI: 10.3389/fchem.2020.00637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
In recent years, significant development milestones have been reached in the areas of facilitated transport membranes and ionic liquids for CO2 separations, making the combination of these materials an incredibly promising technology platform for gas treatment processes, such as post-combustion and direct CO2 capture from air in buildings, submarines, and spacecraft. The developments in facilitated transport membranes involve consistently surpassing the Robeson upper bound for dense polymer membranes, demonstrating a high CO2 flux across the membrane while maintaining very high selectivity. This mini review focuses on the recent developments of facilitated transport membranes, in particular discussing the challenges and opportunities associated with the incorporation of ionic liquids as fixed and mobile carriers for separations of CO2 at low partial pressures (<1 atm).
Collapse
Affiliation(s)
| | | | | | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116519] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
|
16
|
Sampaio AM, Nabais AR, Tomé LC, Neves LA. Impact of MOF-5 on Pyrrolidinium-Based Poly(ionic liquid)/Ionic Liquid Membranes for Biogas Upgrading. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adriana M. Sampaio
- LAQV-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana R. Nabais
- LAQV-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Liliana C. Tomé
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Luísa A. Neves
- LAQV-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
|
18
|
Kanezashi M, Tomarino Y, Nagasawa H, Tsuru T. Tailoring the molecular sieving properties and thermal stability of carbonized membranes containing polyhedral oligomeric silsesquioxane (POSS)-polyimide via the introduction of norbornene. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Dunn CA, Shi Z, Zhou R, Gin DL, Noble RD. (Cross-Linked Poly(Ionic Liquid)–Ionic Liquid–Zeolite) Mixed-Matrix Membranes for CO2/CH4 Gas Separations Based on Curable Ionic Liquid Prepolymers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06464] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Rongfei Zhou
- College of Chemistry & Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | | | | |
Collapse
|
20
|
Bei P, Liu H, Yao H, Jiao Y, Wang Y, Guo L. Preparation and Characterization of a PVDF Membrane Modified by an Ionic Liquid. Aust J Chem 2019. [DOI: 10.1071/ch18447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In order to enhance the hydrophobicity of polyvinylidene fluoride (PVDF) porous membranes, the blending of PVDF with a hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was carried out. The modified PVDF membranes with [Bmim][PF6] were fabricated through a non-solvent induced phase inversion using lithium chloride as a porogen in the PVDF casting solution. The effects of [Bmim][PF6] on the membrane characteristics were investigated. FT-IR analysis indicates that the IL is successfully retained by the PVDF membrane. Thermogravimetric analysis reveals that the optimum temperature of the modified membrane is below 300°C. Scanning electron microscopy pictures show that modified membranes have more homogeneous and larger diameter pores with a mean pore size of 0.521µm and porosity of 78%. By measuring the IL leaching during the membrane fabrication, it was found that the modified membrane does not lose IL. Atomic force microscopy shows that the roughness of the modified membrane surface increases slightly, but the contact angle of the modified membrane increases significantly from 88.1° to 110.1°. The reason for this is that the fluorine-containing IL has a low surface energy, which can enhance the hydrophobicity of the membrane. Finally, by comparing modified membranes with different IL concentrations, we draw a conclusion that the modified membrane with an IL concentration of 3 wt-% has the best properties of pore size, porosity, and hydrophobicity.
Collapse
|
21
|
Ionic liquid embedded polyimides with ultra-foldability, ultra-flexibility, ultra-processability and superior optical transparency. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Ahmad N, Leo C, Mohammad A, Ahmad A. Interfacial sealing and functionalization of polysulfone/SAPO-34 mixed matrix membrane using acetate-based ionic liquid in post-impregnation for CO2 capture. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Mobaraki Z, Moghanian H, Faghihi K, Shabanian M. Novel Semi Crystalline, Soluble and Magnetic Poly(imide-ether)/Zeolite Nanocomposites: Synthesis, Characterization and Computational Study. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0792-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Gao H, Bai L, Han J, Yang B, Zhang S, Zhang X. Functionalized ionic liquid membranes for CO2 separation. Chem Commun (Camb) 2018; 54:12671-12685. [DOI: 10.1039/c8cc07348a] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is imperative to develop efficient, reversible and economic technologies for separating CO2 which mainly comes from flue gas, natural gas and syngas.
Collapse
Affiliation(s)
- Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Jiuli Han
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Bingbing Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
25
|
Soltani B, Asghari M. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane. MEMBRANES 2017; 7:E43. [PMID: 28800109 PMCID: PMC5618128 DOI: 10.3390/membranes7030043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
Polyurethane (PU)-ZnO mixed matrix membranes (MMM) were fabricated and characterized for gas separation. A thermogravimetric analysis (TGA), a scanning electron microscope (SEM) test and an atomic-force microscopy (AFM) revealed that the physical properties and thermal stability of the membranes were improved through filler loading. Hydrogen Bonding Index, obtained from the Fourier transform infrared spectroscopy (FTIR), demonstrate that the degree of phase separation in PU-ZnO 0.5 wt % MMM was more than the neat PU, while in PU-ZnO 1.0 wt % MMM, the phase mixing had increased. Compared to the neat membrane, the CO₂ permeability of the MMMs increased by 31% for PU-ZnO 0.5 wt % MMM and decreased by 34% for 1.0 wt % ZnO MMM. The CO₂/CH₄ and CO₂/N₂ selectivities of PU-ZnO 0.5 wt % were 18.75 and 64.75, respectively.
Collapse
Affiliation(s)
- Banafsheh Soltani
- Separation Processes Research Group (SPRG), Department of Chemical Engineering, University of Kashan, Kashan 8731753153, Iran.
| | - Morteza Asghari
- Separation Processes Research Group (SPRG), Department of Chemical Engineering, University of Kashan, Kashan 8731753153, Iran.
- Energy Research Institute, University of Kashan, Ghotb-e-Ravandi Ave., Kashan 8731753153, Iran.
| |
Collapse
|
26
|
Mendonça da Rocha Oliveira L, Vedovello P, Paranhos CM. Polycarbonate/1-(2-hydroxyethyl)-2,3-dimethylimidazolium chloride composite membranes and short-range chain mobility analysis. J Appl Polym Sci 2017. [DOI: 10.1002/app.45117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Priscila Vedovello
- Department of Chemistry; Federal University of São Carlos; São Carlos São Paulo CEP 13565-905 Brazil
| | - Caio Marcio Paranhos
- Department of Chemistry; Federal University of São Carlos; São Carlos São Paulo CEP 13565-905 Brazil
| |
Collapse
|
27
|
Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S. Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chem Rev 2017; 117:9625-9673. [DOI: 10.1021/acs.chemrev.7b00072] [Citation(s) in RCA: 511] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shaojuan Zeng
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College
of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Bai
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochun Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianji Wang
- School
of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Di Bao
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College
of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdie Li
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College
of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyan Liu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College
of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green
Process and Engineering, State Key Laboratory of Multiphase Complex
Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Li M, Zhang X, Zeng S, bai L, Gao H, Deng J, Yang Q, Zhang S. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv 2017. [DOI: 10.1039/c6ra27221e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of composite membranes with high gas transport properties enhanced by IL and ZIF-8 have been developed. The influence of ionic liquid and ZIF-8 addition on gas separation performance were systematically investigated.
Collapse
Affiliation(s)
- Mengdie Li
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Lu bai
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Jing Deng
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Qingyuan Yang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Institute of Process Engineering
- Chinese Academy of Sciences
| |
Collapse
|
30
|
Lin R, Ge L, Diao H, Rudolph V, Zhu Z. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32041-32049. [PMID: 27933967 DOI: 10.1021/acsami.6b11074] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering and ‡Centre for Microscopy & Microanalysis, Faculty of Science, The University of Queensland , Brisbane 4072, Australia
| | - Lei Ge
- School of Chemical Engineering and ‡Centre for Microscopy & Microanalysis, Faculty of Science, The University of Queensland , Brisbane 4072, Australia
| | - Hui Diao
- School of Chemical Engineering and ‡Centre for Microscopy & Microanalysis, Faculty of Science, The University of Queensland , Brisbane 4072, Australia
| | - Victor Rudolph
- School of Chemical Engineering and ‡Centre for Microscopy & Microanalysis, Faculty of Science, The University of Queensland , Brisbane 4072, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering and ‡Centre for Microscopy & Microanalysis, Faculty of Science, The University of Queensland , Brisbane 4072, Australia
| |
Collapse
|
31
|
Ando S, Konishi S, Yoshida A, Nagai K. Phototransparency and water vapor sorption properties of ABA-type triblock copolymers derived from 6FDA-TeMPD and poly(2-methyl-2-adamantylmethacrylate). J Appl Polym Sci 2016. [DOI: 10.1002/app.43795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shota Ando
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashimita Tama-Ku Kawasaki 214-8571 Japan
| | - Shimpei Konishi
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashimita Tama-Ku Kawasaki 214-8571 Japan
| | - Akihiro Yoshida
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashimita Tama-Ku Kawasaki 214-8571 Japan
| | - Kazukiyo Nagai
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashimita Tama-Ku Kawasaki 214-8571 Japan
| |
Collapse
|
32
|
Gomez-Coma L, Garea A, Rouch J, Savart T, Lahitte J, Remigy J, Irabien A. Membrane modules for CO 2 capture based on PVDF hollow fibers with ionic liquids immobilized. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Tomé LC, Marrucho IM. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. Chem Soc Rev 2016; 45:2785-824. [DOI: 10.1039/c5cs00510h] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a judicious assessment of the CO2 separation efficiency of membranes using ionic liquid-based materials and highlights breakthroughs and key challenges in this field.
Collapse
Affiliation(s)
- Liliana C. Tomé
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
34
|
Affiliation(s)
- Shinji KANEHASHI
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology
- Department of Chemical and Biomolecular Engineering, The University of Melbourne
| |
Collapse
|
35
|
Deng J, Bai L, Zeng S, Zhang X, Nie Y, Deng L, Zhang S. Ether-functionalized ionic liquid based composite membranes for carbon dioxide separation. RSC Adv 2016. [DOI: 10.1039/c6ra04285f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellulose acetate and ether-functionalized pyridinium-based ionic liquid composite membranes has been designed to improve CO2 separation performance.
Collapse
Affiliation(s)
- Jing Deng
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Liyuan Deng
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- Trondheim
- 7491 Norway
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex Systems
- Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
| |
Collapse
|
36
|
Crosslinking of polyimide atomic-layer-deposited on polyethersulfone membranes for synergistically enhanced performances. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.03.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Zhang C, Dong L, Zhang Y, Bai Y, Gu J, Sun Y, Chen M. Poly(ether-b-amide)/Tween20 gel membranes for CO2/N2separation. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1047851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Liu Y, Peng D, He G, Wang S, Li Y, Wu H, Jiang Z. Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13051-13060. [PMID: 25068977 DOI: 10.1021/am502936x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, polyzwitterion is introduced into a CO2 separation membrane. Composite particles of polyzwitterion coated carbon nanotubes (SBMA@CNT) are prepared via a precipitation polymerization method. Hybrid membranes are fabricated by incorporating SBMA@CNT in polyimide matrix and utilized for CO2 separation. The prepared composite particles and hybrid membranes are characterized by transmission electron microscopy (TEM) with element mapping, field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and an electronic tensile machine. Water uptake and water state of membranes are measured to probe the relationship among water uptake, water state and CO2 transport behavior. Hybrid membranes show significantly enhanced CO2 permeability compared to an unfilled polyimide membrane at a humidified state. A hybrid membrane with 5 wt % SBMA@CNT exhibits the maximum CO2 permeability of 103 Barrer with a CO2/CH4 selectivity of 36. The increase of CO2 permeability is attributed to the incorporation of the SBMA@CNT composite particles. First, SBMA@CNT form interconnected channels for CO2 transport due to the facilitated transport effect of the quaternary ammonium in repeat unit of pSBMA. Second, SBMA@CNT improve water uptake and adjust water state of membrane, which further increases CO2 permeability. Meanwhile, the variation of CO2/CH4 selectivity is dependent on the bound water portion in the membrane. A gas permeation test at a dry state and a pressure test are conducted to further probe the membrane separation performance.
Collapse
Affiliation(s)
- Ye Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | | | | | | | | | | | | |
Collapse
|