1
|
Yu J, Zhang H, Liu Q, Zhu J, Yu J, Sun G, Li R, Wang J. A high-flux antibacterial poly(amidoxime)-polyacrylonitrile blend membrane for highly efficient uranium extraction from seawater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129735. [PMID: 35988484 DOI: 10.1016/j.jhazmat.2022.129735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Uranium is an important fuel for nuclear power, with 4.5 billion tons of it stored in the oceans, 1,000 times more than on land. Polymer membrane materials are widely used in the marine resources fields, due to their convenient collection, good separation and can work continuously. Herein, a poly(amidoxime)-polyacrylonitrile blend membrane (PCP) with high flux, excellent antibacterial properties and uranium adsorption performance has been prepared by using the phase inversion method, and the prepared membrane was used for highly efficient uranium extraction from seawater. In static adsorption experiments, the PCP membrane reached adsorption equilibrium after 48 h, and the adsorption capacity was 303.89 mg/g (C0 =50 mg/L). In dynamic adsorption experiments, it was found that the lower flow rate and higher number of membrane layers were favorable for dynamic adsorption. In addition, the water flux of the PCP membrane was 7.4 times higher than that of the PAN membrane. The adsorption mechanism can be attributed to the chelation between amino and hydroxyl groups in CS, amidoxime group in poly(amidoxime) and uranyl ions. The simple preparation process coupled with the excellent adsorption performance indicated that the PCP membrane would be a promising material for the uranium extraction from seawater.
Collapse
Affiliation(s)
- Jiaqi Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China.
| |
Collapse
|
2
|
Kanagaraj P, Soyekwo F, Mohamed IM, Huang W, Liu C. Towards improved protein anti-fouling and anti-microbial properties of poly (vinylidene fluoride) membranes by blending with lactate salts-based polyurea as surface modifiers. J Colloid Interface Sci 2020; 567:379-392. [DOI: 10.1016/j.jcis.2020.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
|
4
|
Moghimifar V, Livari AE, Raisi A, Aroujalian A. Enhancing the antifouling property of polyethersulfone ultrafiltration membranes using NaX zeolite and titanium oxide nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra06986f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fouling tendency of nanocomposite membranes containing TiO2 and NaX zeolite nanoparticles was significantly lower than the neat PES membrane.
Collapse
Affiliation(s)
- V. Moghimifar
- Department of Chemical Engineering
- Amirkabir University of Technology (Tehran Polytechnic)
- Tehran
- Iran
| | - A. Esmaili Livari
- Department of Chemical Engineering
- Amirkabir University of Technology (Tehran Polytechnic)
- Tehran
- Iran
| | - A. Raisi
- Department of Chemical Engineering
- Amirkabir University of Technology (Tehran Polytechnic)
- Tehran
- Iran
| | - A. Aroujalian
- Department of Chemical Engineering
- Amirkabir University of Technology (Tehran Polytechnic)
- Tehran
- Iran
| |
Collapse
|