1
|
Mubashir M, Ahmad T, Liu X, Rehman LM, de Levay JPBB, Al Nuaimi R, Thankamony R, Lai Z. Artificial intelligence and structural design of inorganic hollow fiber membranes: Materials chemistry. CHEMOSPHERE 2023; 338:139525. [PMID: 37467860 DOI: 10.1016/j.chemosphere.2023.139525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
A key challenge is to produce the uniform morphology and regular pore design of inorganic hollow fiber membranes (HFMs) due to involvement of multiple parameters including, fabrication process and materials chemistry. Inorganic HFMs required technical innovations via novel structural design and artificial intelligence (AI) to produce the uniform structure and regular pore design. Therefore, this review aims at critical analysis on the most recent and relevant approaches to tackle the issues related to tune the morphology and pore design of inorganic HFMs. Structural design and evaluation of routes towards the dope suspension, spinning, and sintering of inorganic HFMs are critically analysed. AI, driving forces and challenges involved for harnessing of materials are revealed in this review. AI programs used for the prediction of pore design and performance of HFMs have also been explained in this review. Overall, this review will provide the understanding to build the equilibrium in spinning and sintering processes to control the design of micro-channels, and structural properties of inorganic HFMs. This review has great significance to control the new design of membranes via AI programs. This review also explain the inorganic membrane efficiency as algal-bioreactor.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Tausif Ahmad
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaowei Liu
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lubna Muzamil Rehman
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
The Potential of Membrane Contactors in the Pre-Treatment and Post-Treatment Lines of a Reverse Osmosis Desalination Plant. SEPARATIONS 2023. [DOI: 10.3390/separations10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The flexibility of membrane contactors (MCs) is highlighted for a reverse osmosis (RO) desalination plant. MCs are applied as pre-treatment for the oxygen removal and the pH reduction of seawater, also as post-treatment for the pH increase of the RO permeate and the reduction of the RO brine volume. A decrease of the seawater pH down to neutral values, as needed when coagulation is used in the pre-treatment line of RO, together with an increase of the RO permeate pH up to 7.58, matching the target of produced water, can be obtained without the use of chemicals. Direct Contact Membrane Distillation (DCMD) and Vacuum Membrane Distillation (VMD) are investigated as function of the feed concentration (ranging from 40 g/L to 80 g/L) and temperature (40 °C–80° C). Their performance is compared at parity of operating conditions and in terms of applied driving force. Both distillation systems are able to efficiently reject salts (rejection > 99.99%), while higher distillate fluxes are obtained when a vacuum is applied at the permeate side (15 kg/m2h vs. 6.6 kg/m2h for the 80 g/L feed).
Collapse
|
3
|
Fawzy MK, Varela-Corredor F, Boi C, Bandini S. The Role of the Morphological Characterization of Multilayer Hydrophobized Ceramic Membranes on the Prediction of Sweeping Gas Membrane Distillation Performances. MEMBRANES 2022; 12:939. [PMID: 36295698 PMCID: PMC9611222 DOI: 10.3390/membranes12100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
This paper shows which morphological characterization method is most appropriate to simulating membrane performance in sweeping gas membrane distillation in the case of multilayer hydrophobized ceramic membranes. As a case study, capillary four-layer hydrophobic carbon-based titania membranes arranged in bundles in a shell-and-tube configuration were tested with NaCl-water solutions using air as sweeping gas, operating at temperatures from 40 to 110 °C and at pressures up to 5.3 bar. Contrary to what is generally performed for polymeric membranes and also suggested by other authors for ceramic membranes, the mass transfer across the membrane should be simulated using the corresponding values of the mean pore diameter and the porosity-tortuosity ratio of each layer and measured by the layer-by-layer (LBL) method. Comparison of the modeling results with experimental data highlights that the use of parameters averaged over the entire membrane leads to an overestimation by a factor of two to eight of the modeled fluxes, with respect to the experimental values. In contrast, the agreement between the modeled fluxes and the experimental values is very interesting when the LBL parameters are used, with a discrepancy on the order of +/-30%. Finally, the model has been used to investigate the role of operative parameters on process performances. Process efficiency should be the optimal balance between the concomitant effects of temperature and velocity of the liquid phase and pressure and velocity of the gas phase.
Collapse
|
4
|
Evaluation of the Specific Energy Consumption of Sea Water Reverse Osmosis Integrated with Membrane Distillation and Pressure-Retarded Osmosis Processes with Theoretical Models. MEMBRANES 2022; 12:membranes12040432. [PMID: 35448402 PMCID: PMC9030420 DOI: 10.3390/membranes12040432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022]
Abstract
In this study, theoretical models for specific energy consumption (SEC) were established for water recovery in different integrated processes, such as RO-PRO, RO-MD and RO-MD-PRO. Our models can evaluate SEC under different water recovery conditions and for various proportions of supplied waste heat. Simulation results showed that SEC in RO increases with the water recovery rate when the rate is greater than 30%. For the RO-PRO process, the SEC also increases with the water recovery rate when the rate is higher than 38%, but an opposite trend can be observed at lower water recovery rates. If sufficient waste heat is available as the heat source for MD, the integration of MD with the RO or RO-PRO process can significantly reduce SEC. If the total water recovery rate is 50% and MD accounts for 10% of the recovery when sufficient waste heat is available, the SEC values of RO, RO-PRO, RO-MD and RO-MD-PRO are found to be 2.28, 1.47, 1.75 and 0.67 kWh/m3, respectively. These critical analyses provide a road map for the future development of process integration for desalination.
Collapse
|
5
|
Abdelrazeq H, Khraisheh M, Hassan MK. Long-Term Treatment of Highly Saline Brine in a Direct Contact Membrane Distillation (DCMD) Pilot Unit Using Polyethylene Membranes. MEMBRANES 2022; 12:membranes12040424. [PMID: 35448393 PMCID: PMC9031770 DOI: 10.3390/membranes12040424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Membrane distillation (MD) is an attractive separation process for wastewater treatment and desalination. There are continuing challenges in implementing MD technologies at a large industrial scale. This work attempts to investigate the desalination performance of a pilot-scale direct contact membrane distillation (DCMD) system using synthetic thermal brine mimicking industrial wastewater in the Gulf Cooperation Council (GCC). A commercial polyethylene membrane was used in all tests in the DCMD pilot unit. Long-term performance exhibited up to 95.6% salt rejection rates using highly saline feed (75,500 ppm) and 98% using moderate saline feed (25,200 ppm). The results include the characterization of the membrane surface evolution during the tests, the fouling determination, and the assessment of the energy consumption. The fouling effect of the polyethylene membrane was studied using Humic acid (HA) as the feed for the whole DCMD pilot unit. An optimum specific thermal energy consumption (STEC) reduction of 10% was achieved with a high flux recovery ratio of 95% after 100 h of DCMD pilot operation. At fixed operating conditions for feed inlet temperature of 70 °C, a distillate inlet temperature of 20 °C, with flowrates of 70 l/h for both streams, the correlations were as high as 0.919 between the pure water flux and water contact angle, and 0.963 between the pure water flux and salt rejection, respectively. The current pilot unit study provides better insight into existing thermal desalination plants with an emphasis on specific energy consumption (SEC). The results of this study may pave the way for the commercialization of such filtration technology at a larger scale in global communities.
Collapse
Affiliation(s)
- Haneen Abdelrazeq
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
- Correspondence:
| | - Mohammad K. Hassan
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
6
|
Thermal Performance of Integrated Direct Contact and Vacuum Membrane Distillation Units. ENERGIES 2021. [DOI: 10.3390/en14217405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An integrated membrane distillation (MD) flowsheet, consisting of direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD) units, was proposed and analysed in terms of thermal performance and water recovery factor, for the first time. The same lab-scale membrane module (40 cm2) was used for carrying out experiments of DCMD and VMD at fixed feed operating conditions (deionised water at 230 L/h and ~40 °C) while working at the permeate side with deionised water at 18 °C and with a vacuum of 20 mbar for the DCMD and the VMD configuration, respectively. Based on experimental data obtained on the single modules, calculations of the permeate production, the specific thermal energy consumption (STEC) and the gained output ratio (GOR) were carried out for both single and integrated units. Moreover, the calculations were also made for a flow sheet consisting of two DCMD units in series, representing the “traditional” way in which more units of the same MD configuration are combined to enhance the water recovery factor. A significant improvement of the thermal performance (lower STEC and higher GOR) was obtained with the integrated DCMD–VMD flowsheet with respect to the DCMD units operating in series. The integration of DCMD with VMD also led to a higher permeate production and productivity/size (PS) ratio, a metric defined to compare plants in terms of the process intensification strategy.
Collapse
|
7
|
|
8
|
Affiliation(s)
- Salih Emre Demirel
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Jianping Li
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - M. M. Faruque Hasan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
9
|
Sallakh Niknejad A, Bazgir S, Kargari A. Novel Triple-Layer HIPS/SBR/PP Nanofibrous Membranes for Robust DCMD Desalination. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ali Sallakh Niknejad
- Nanopolymer Research Laboratory (NPRL), Department of Polymer Engineering, Petroleum, and Chemical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Saeed Bazgir
- Nanopolymer Research Laboratory (NPRL), Department of Polymer Engineering, Petroleum, and Chemical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Ali Kargari
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| |
Collapse
|
10
|
Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv Colloid Interface Sci 2019; 273:102022. [PMID: 31494337 DOI: 10.1016/j.cis.2019.102022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
Membrane distillation (MD) has been touted as a promising technology for niche applications such as desalination of surfactant- and oil-containing feed streams. Hitherto, the deployment of conventional hydrophobic MD membranes for such applications is limited and unsatisfactory. This is because the presence of surfactants and oils in aqueous feed streams reduces the surface-tension of these media significantly and the attachment of these contaminants onto hydrophobic membrane surfaces often leads to membrane fouling and pore wetting, which compromises on the quantity and quality of water recovered. Endowing MD membranes with surfaces of special wettabilities has been proposed as a strategy to combat membrane fouling and pore wetting. This involves the design of local kinetic energy barriers such as multilevel re-entrant surface structures, surfaces with ultralow surface-energies, and interfacial hydration layers to impede transition to the fully-wetted Wenzel state. This review critiques the state-of-the-art fabrication and surface-modification methods as well as practices used in the development of omniphobic and Janus MD membranes with specific emphasis on the advances, challenges, and future improvements for application in challenging surfactant- and oil-containing feed streams.
Collapse
|
11
|
Ramlow H, Machado RAF, Bierhalz ACK, Marangoni C. Influence of dye class on the comparison of direct contact and vacuum membrane distillation applied to remediation of dyeing wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1337-1347. [PMID: 31361190 DOI: 10.1080/10934529.2019.1647059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
This work investigated the influence of dye class on permeate flux and color rejection by comparing direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD) applied to remediation of dyeing wastewater. The same operating system at the feed side was used and the driving force of each configuration was determined. Reactive and disperse dye solutions were considered, and a commercial membrane was employed. Final color rejection > 90.79% was obtained, and water was recovered at the permeate side (final normalized permeate flux up to 38.92 kg m-2day-1kPa-1). VMD showed higher normalized permeate flux when compared to DCMD. However, the performance according to dye class depended on MD configuration. Reactive dye resulted in higher permeate flux than the disperse dye solution in DCMD. Contrarily, disperse dye solution showed higher permeate flux in VMD. The formation of a concentration boundary layer at the permeate membrane interface was suggested with disperse dye solution in DCMD, decreasing thus the driving force. In VMD, the boundary effect is negligible with disperse dye solution. This result implies that the VMD performance in the textile industry may depend more on driving force rather than the dye class of the dyeing bath.
Collapse
Affiliation(s)
- Heloisa Ramlow
- Graduate Program in Chemical Engineering, Federal University of Santa Catarina , Florianópolis , Brazil
| | | | | | - Cintia Marangoni
- Graduate Program in Chemical Engineering, Federal University of Santa Catarina , Florianópolis , Brazil
- Department of Textile Engineering, Federal University of Santa Catarina , Blumenau , Brazil
| |
Collapse
|
12
|
Shao Y, Han M, Wang Y, Li G, Xiao W, Li X, Wu X, Ruan X, Yan X, He G, Jiang X. Superhydrophobic polypropylene membrane with fabricated antifouling interface for vacuum membrane distillation treating high concentration sodium/magnesium saline water. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Enhanced performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Modification of polyacrylonitrile membranes via plasma treatment followed by polydimethylsiloxane coating for recovery of ethyl acetate from aqueous solution through vacuum membrane distillation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Jantaporn W, Ali A, Aimar P. Specific energy requirement of direct contact membrane distillation. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Liu J, Wang Q, Han L, Li B. Simulation of heat and mass transfer with cross-flow hollow fiber vacuum membrane distillation: The influence of fiber arrangement. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Cao W, Mujtaba IM. Simulation of Vacuum Membrane Distillation Process for Desalination with Aspen Plus. Ind Eng Chem Res 2015. [DOI: 10.1021/ie502874c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wensheng Cao
- Fujian Province Key Lab of Energy Cleaning Utilization and Development, Xiamen 361021, China
- Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen 361021, China
| | - Iqbal M. Mujtaba
- School
of Engineering and Informatics, University of Bradford, West Yorkshire, Bradford BD7 1DP, U.K
| |
Collapse
|