1
|
Wang Y, Dai Y, Li L, Yu L, Zeng W. Proton-Coupled Electron Transfer Aided Thermoelectric Energy Conversion and Storage. Angew Chem Int Ed Engl 2023; 62:e202307947. [PMID: 37421169 DOI: 10.1002/anie.202307947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Low-grade heat is ubiquitous in the environment and its thermoelectric conversion by the ionic conductors remains a challenge because of the low efficiency and poor sustainability. Here we demonstrate that the thermoelectric performances can be boosted by combining the Soret effect of protons and proton-coupled electron transfer (PCET) reaction of benzoquinone and hydroquinone in hydrogels. An overall enhancement of thermopower (25.9 mV K-1 ), power factor (5 mW m-1 K-2 ), figure of merit (>2.4) and continuity of power output is achieved. Moreover, an energy-storage function can be achieved by the redox couple, and a retained power output of 27.7 %, or 14 mW m-2 for more than 3 hours is obtained by the re-balance of PCET reactants in the hydrogel after the removal of the temperature gradient.
Collapse
Affiliation(s)
- Yang Wang
- Guangdong Provincial Key Laboratory of industrial surfactant and Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, No 318, Chebeixi Road, Guangzhou, 510665, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100, Waihuanxi Road, Guangzhou, 510006, China
| | - Yongqiang Dai
- Guangdong Provincial Key Laboratory of industrial surfactant and Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, No 318, Chebeixi Road, Guangzhou, 510665, China
| | - Longbin Li
- Guangdong Provincial Key Laboratory of industrial surfactant and Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, No 318, Chebeixi Road, Guangzhou, 510665, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100, Waihuanxi Road, Guangzhou, 510006, China
| | - Wei Zeng
- Guangdong Provincial Key Laboratory of industrial surfactant and Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, No 318, Chebeixi Road, Guangzhou, 510665, China
| |
Collapse
|
2
|
Biswas SK, Chatterjee S, Laha S, Pakira V, Som NK, Saha S, Chakraborty S. Instrument-free single-step direct estimation of the plasma glucose level from one drop of blood using smartphone-interfaced analytics on a paper strip. LAB ON A CHIP 2022; 22:4666-4679. [PMID: 36345815 DOI: 10.1039/d2lc00824f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrated an instrument-free miniaturized adaptation of the laboratory gold standard methodology for the direct estimation of plasma glucose from a drop of whole blood using a low-cost single-user-step paper-strip sensor interfaced with a smartphone. Unlike a majority of the existing glucose meters that use whole blood-based indirect sensing technologies, our direct adaptation of the gold-standard laboratory benchmark could eliminate the possibilities of cross interference with other analytes present in the whole blood by facilitating an in situ plasma separation, capillary flow and colorimetric reaction occurring concomitantly, without incurring additional device complexity or embodiment. The test reagents were dispensed in lyophilized form, and the resulting paper strips were found to be stable over three months stored in a normal freezer, rendering easy adaptability commensurate with the constrained supply chains in extreme resource-poor settings. Quantitative results could be arrived at via a completely-automated mobile-app-based image analytics interface developed using dynamic machine learning, obviating manual interpretation. The tests were demonstrated to be of high efficacy, even when executed by minimally trained frontline personnel having no special skill of drawing precise volume of blood, on deployment at under-resourced community centres having no in-built or accessible healthcare infrastructure. Clinical validation using 220 numbers of human blood samples in a double-blinded manner evidenced sensitivity and specificity of 98.11% and 96.7%, respectively, as compared to the results obtained from a laboratory-benchmarked biochemistry analyser, establishing its efficacy for public health and community disease management in resource-limited settings without any quality compromise of the test outcome.
Collapse
Affiliation(s)
- Sujay K Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Subhamoy Chatterjee
- Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Victor Pakira
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nirmal K Som
- B C Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Satadal Saha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- B C Roy Institute of Medical Science and Research, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- JSV Innovations Pvt. Ltd, Kolkata, 700025, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
A theoretical understanding of ionic current through a nanochannel driven by a viscosity gradient. J Colloid Interface Sci 2022; 628:545-555. [PMID: 36007419 DOI: 10.1016/j.jcis.2022.07.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Different thermodynamic forces owing to the gradient of temperature, electrical potential, or concentration can drive ionic current through charged membranes. It has been recently shown that a viscosity gradient can drive an electrical current through a negatively charged nanochannel (Wiener and Stein, arXiv: 1807.09106). A model description of this phenomenon, based on the Maxwell-Stefan equation will help unravel the dominating physical mechanisms in so-called visco-migration. THEORY To understand the physical mechanisms underlying this phenomenon, we employed the Maxwell-Stefan equation to develop a 1D model and obtain a relation between the flux of solvents and the driving forces. Viscosity gradients are known to drive transport, but the development of an electrical current has not been theoretically described prior to this work. FINDINGS Our 1D model shows that the ionic current depends on the ideality of the solvent, though both ideal and non-ideal scenarios demonstrated good agreement with experimental data. We employed the model to understand the impact of solution bulk ionic strength and pH on the drift of ionic species with same reservoirs solution properties. Our modeling results unveiled the significant impact of bulk solution properties on the drift of ions which is in agreement with the experiments. Moreover, we have shown that the diffusion gradient along the nanochannel contributes significantly into driving ionic species if we even apply a small ionic concentration gradient to both reservoirs. Our modeling results may pave the way for finding novel applications for drift of ions in a diffusion gradient, which can be induced by connecting reservoirs of different viscosity fluids.
Collapse
|
4
|
Zhang W, Farhan M, Jiao K, Qian F, Guo P, Wang Q, Yang CC, Zhao C. Simultaneous thermoosmotic and thermoelectric responses in nanoconfined electrolyte solutions: Effects of nanopore structures and membrane properties. J Colloid Interface Sci 2022; 618:333-351. [PMID: 35344885 DOI: 10.1016/j.jcis.2022.03.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Nanofluidic systems provide an emerging and efficient platform for thermoelectric conversion and fluid pumping with low-grade heat energy. As a basis of their performance enhancement, the effects of the structures and properties of the nanofluidic systems on the thermoelectric response (TER) and the thermoosmotic response (TOR) are yet to be explored. METHODS The simultaneous TER and TOR of electrolyte solutions in nanofluidic membrane pores on which an axial temperature gradient is exerted are investigated numerically and semi-analytically. A semi-analytical model is developed with the consideration of finite membrane thermal conductivity and the reservoir/entrance effect. FINDINGS The increase in the access resistance due to the nanopore-reservoir interfaces accounts for the decrease of short circuit current at the low concentration regime. The decrease in the thermal conductivity ratio can enhance the TER and TOR. The maximum power density occurring at the nanopore radius twice the Debye length ranges from several to dozens of mW K-2 m-2 and is an order of magnitude higher than typical thermo-supercapacitors. The surface charge polarity can heavily affect the sign and magnitude of the short-circuit current, the Seebeck coefficient and the open-circuit thermoosmotic coefficient, but has less effect on the short-circuit thermoosmotic coefficient. Furthermore, the membrane thickness makes different impacts on TER and TOR for zero and finite membrane thermal conductivity.
Collapse
Affiliation(s)
- Wenyao Zhang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Muhammad Farhan
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Jiao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fang Qian
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Panpan Guo
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuwang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Charles Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cunlu Zhao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Zhang W, Yan H, Wang Q, Zhao C. An extended Teorell-Meyer-Sievers theory for membrane potential under non-isothermal conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Mohanakumar S, Wiegand S. Towards understanding specific ion effects in aqueous media using thermodiffusion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:10. [PMID: 35106668 PMCID: PMC8807466 DOI: 10.1140/epje/s10189-022-00164-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Specific ion effects play an important role in scientific and technological processes. According to Hofmeister, the influence on the hydrogen bond network depends on the ion and leads to a specific order of the ions. Also thermodiffusion the mass transport caused by a temperature gradient is very sensitive to changes of the hydrogen bond network leading to a ranking according to hydrophilicity of the salt. Hence, we investigate various salt solutions in order to compare with the Hofmeister concept. We have studied three different sodium salts in water as a function of temperature (25-45[Formula: see text]C) and concentration (0.5-5 mol kg[Formula: see text]) using Thermal Diffusion Forced Rayleigh Scattering (TDFRS). The three anions studied, carbonate, acetate and thiocyanate, span the entire range of the Hofmeister series from hydrophilic to hydrophobic. We compare the results with the recent measurements of the corresponding potassium salts to see to what extent the cation changes the thermodiffusion of the salt.
Collapse
Affiliation(s)
- Shilpa Mohanakumar
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428, Jülich, Germany
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428, Jülich, Germany.
- Chemistry Department-Physical Chemistry, University Cologne, D-50939, Cologne, Germany.
| |
Collapse
|
7
|
Mohanakumar S, Kriegs H, Briels WJ, Wiegand S. Overlapping hydration shells in salt solutions causing non-monotonic Soret coefficients with varying concentration. Phys Chem Chem Phys 2022; 24:27380-27387. [DOI: 10.1039/d2cp04089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We develop an intuitive picture that overlapping hydration shells in salt solutions cause non-monotonic Soret coefficients with varying concentration.
Collapse
Affiliation(s)
- Shilpa Mohanakumar
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Hartmut Kriegs
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - W. J. Briels
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
- University of Twente, Computational Chemical Physics, Postbus 217, 7500 AE Enschede, The Netherlands
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
- Chemistry Department – Physical Chemistry, University Cologne, D-50939 Cologne, Germany
| |
Collapse
|
8
|
Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study. MEMBRANES 2021; 11:membranes11070480. [PMID: 34203522 PMCID: PMC8305538 DOI: 10.3390/membranes11070480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Thermocells are non-isothermal electrochemical cells used to convert thermal energy into electricity. In a thermocell, together with the ion flux, heat is also transferred, which can reduce the temperature gradient and thus the delivered electric current. A charged membrane used as a separating barrier in the electrolyte liquid could reduce this problem. Therefore, the use of ion-exchange membranes has been suggested as an alternative in terms of thermoelectricity because of their high Seebeck coefficient. Ion transfer occurs not only at the liquid solution but also at the solid membrane when a temperature gradient is imposed. Thus, the electric current delivered by the thermocell will also be highly dependent on the membrane system properties. In this work, a polymeric membrane-based thermocell with 1:1 alkali chloride electrolytes and reversible Ag|AgCl electrodes at different temperatures is studied. This work focuses on the experimental relation between the short-circuit current density and the temperature difference. Short-circuit current is the maximum electric current supplied by a thermocell and is directly related to the maximum output electrical power. It can therefore provide valuable information on the thermocell efficiency. The effect of the membrane, electrolyte nature and hydrodynamic conditions is analysed from an experimental point of view.
Collapse
|
9
|
|
10
|
Barragán VM, Kristiansen KR, Kjelstrup S. Perspectives on Thermoelectric Energy Conversion in Ion-Exchange Membranes. ENTROPY 2018; 20:e20120905. [PMID: 33266629 PMCID: PMC7512490 DOI: 10.3390/e20120905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022]
Abstract
By thermoelectric power generation we mean the creation of electrical power directly from a temperature gradient. Semiconductors have been mainly used for this purpose, but these imply the use of rare and expensive materials. We show in this review that ion-exchange membranes may be interesting alternatives for thermoelectric energy conversion, giving Seebeck coefficients around 1 mV/K. Laboratory cells with Ag|AgCl electrodes can be used to find the transported entropies of the ions in the membrane without making assumptions. Non-equilibrium thermodynamics can be used to compute the Seebeck coefficient of this and other cells, in particular the popular cell with calomel electrodes. We review experimental results in the literature on cells with ion-exchange membranes, document the relatively large Seebeck coefficient, and explain with the help of theory its variation with electrode materials and electrolyte concentration and composition. The impact of the membrane heterogeneity and water content on the transported entropies is documented, and it is concluded that this and other properties should be further investigated, to better understand how all transport properties can serve the purpose of thermoelectric energy conversion.
Collapse
Affiliation(s)
- V. María Barragán
- Department of Structure of Matter, Thermal Physics and Electronics; Complutense University of Madrid, 28040 Madrid, Spain
| | - Kim R. Kristiansen
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Signe Kjelstrup
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Correspondence: ; Tel.: +47-918-97079
| |
Collapse
|
11
|
Jokinen M, Manzanares JA, Murtomäki L. Soret coefficient of trace ions determined with electrochemical impedance spectroscopy in a thin cell. Theory and measurement. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|