1
|
Eddine MA, Carvalho A, Schmutz M, Salez T, de Chateauneuf-Randon S, Bresson B, Pantoustier N, Monteux C, Belbekhouche S. Tuning the water intrinsic permeability of PEGDA hydrogel membranes by adding free PEG chains of varying molar masses. SOFT MATTER 2024; 20:5367-5376. [PMID: 38916101 DOI: 10.1039/d4sm00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We explore the effect of poly(ethylene glycol) (PEG) molar mass on the intrinsic permeability and structural characteristics of poly(ethylene glycol) diacrylate PEGDA/PEG composite hydrogel membranes. We observe that by varying the PEG content and molar mass, we can finely adjust the water intrinsic permeability by several orders of magnitude. Notably, we show the existence of maximum water intrinsic permeability, already identified in a previous study to be located at the critical overlap concentration C* of PEG chains, for the highest PEG molar mass studied. Furthermore, we note that the maximum intrinsic permeability follows a non-monotonic evolution with respect to the PEG molar mass and reaches its peak at 35 000 g mol-1. Besides, our results show that a significant fraction of PEG chains is irreversibly trapped within the PEGDA matrix even for the lowest molar masses down to 600 g mol-1. This observation suggests the possibility of covalent grafting of the PEG chains onto the PEGDA matrix. CryoSEM and AFM measurements demonstrate the presence of large micron-sized cavities separated by PEGDA-rich walls whose nanometric structures strongly depend on the PEG content. By combining our permeability and structural measurements, we suggest that the PEG chains trapped inside the PEGDA-rich walls induce nanoscale defects in the crosslinking density, resulting in increased permeability below C*. Conversely, above C*, we speculate that partially trapped PEG chains may form a brush-like arrangement on the surface of the PEGDA-rich walls, leading to a reduction in permeability. These two opposing effects are anticipated to exhibit molar-mass-dependent trends, contributing to the non-monotonic variation of the maximum intrinsic permeability at C*. Overall, our results demonstrate the potential to fine-tune the properties of hydrogel membranes, offering new opportunities for separation applications.
Collapse
Affiliation(s)
- Malak Alaa Eddine
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| | - Alain Carvalho
- Université de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg Cedex 02, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg Cedex 02, France
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Sixtine de Chateauneuf-Randon
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Nadège Pantoustier
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Cécile Monteux
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
2
|
Wang Z, Shao Y, Wang T, Zhang J, Cui Z, Guo J, Li S, Chen Y. Janus Membranes with Asymmetric Superwettability for High-Performance and Long-Term On-Demand Oil/Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38476008 DOI: 10.1021/acsami.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Current single-function superwettable materials are typically designed for either oil removal or water removal and are constrained by oil density, limiting their widespread applications. Janus membranes with opposite wettability on their two surfaces have recently emerged and present attractive opportunities for on-demand oil/water emulsion separation. Here, a combination strategy is introduced to prepare a Janus membrane with asymmetric superwettability for switchable oil/water emulsion separation. A mussel-inspired asymmetric interface introduction cooperating with the sequence-confined surface modification not only brings about an asymmetric superwettability Janus interface but also guarantees an outstanding stable interface and remarkable chemical stability surfaces. Specifically, the superhydrophilic surface with underwater superoleophobicity can separate surfactant-stabilized oil-in-water emulsions. Conversely, other surface displays opposite superhydrophobicity and superoleophilicity to treat surfactant-stabilized water-in-oil emulsions. Significantly, this superwettable Janus membrane presents superior long-term on-demand oil/water emulsion separation without obvious flux decline and high recovery ability because of its superwettability and superior stability. Furthermore, the asymmetric superwettability enhances the interfacial floatability at air-water interfaces, enabling the design of advanced interfacial materials. The as-prepared superwettable Janus membrane has established a cooperated separation system, overcoming the monotony of conventional superwettable membranes and expanding the application of these specialized membranes to oily wastewater treatment.
Collapse
Affiliation(s)
- Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Yubing Shao
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Tianyi Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Jinghan Zhang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Zhanyuan Cui
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
3
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
4
|
Sharma R, Sharma N, Prashar A, Hansa A, Asgari Lajayer B, Price GW. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167697. [PMID: 37832694 DOI: 10.1016/j.scitotenv.2023.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Increased use of nanoscale particles have benefited many industries, including medicine, electronics, and environmental cleaning. These particles provide higher material performance, greater reactivity, and improved drug delivery. However, the main concern is the generation of nanowastes that can spread in different environmental matrices, posing threat to our environment and human health. Nanoparticles (NPs) have the potential to enter the food chain through a variety of pathways, including agriculture, food processing, packaging, and environmental contamination. These particles can negatively impact plant and animal physiology and growth. Due to the assessment of their environmental damage, nanoparticles are the particles of size between 1 and 100 nm that is the recent topic to be discussed. Nanoparticles' absorption, distribution, and toxicity to plants and animals can all be significantly influenced by their size, shape, and surface chemistry. Due to their absorptive capacity and potential to combine with other harmful substances, they can alter the metabolic pathways of living organisms. Nevertheless, despite the continuous research and availability of data, there are still knowledge gaps related to the ecotoxicology, prevalence and workable ways to address the impact of nanoparticles. This review focuses on the impact of nanoparticles on different organisms and the application of advanced techniques to remediate ecosystems using hyperaccumulator plant species. Future considerations are explored around nano-phytoremediation, as an eco-friendly, convenient and cost effective technology that can be applied at field scales.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Nindhia Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abhinav Prashar
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
5
|
Arias-Ruiz F, Rangel-Porras G, Falcón-Millán G, Razo-Lazcano T, González-Muñoz P. Effect of basic and basic/acid modifications on the surface of PVDF membranes for the insertion of TiO 2 and its use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:126009-126028. [PMID: 38008843 DOI: 10.1007/s11356-023-31052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Supporting titanium oxide (TiO2) on polymeric membrane surfaces is a strategy to increase the photocatalytic activity of this material as well as to modify membrane surface with antifouling properties or to develop hybrid processes of water treatment. The chemical characteristics of the polymeric membrane surfaces are a determining factor in the correct impregnation of TiO2 particles. In this work, the titanium oxide was immobilized on polyvinylidene fluoride (PVDF) membrane surface by direct impregnation during the synthesis of the inorganic particles by sol-gel route. The PVDF membranes were previously modified by treatments based on an alkaline attack followed by acid treatment. The final TiO2-modified membranes were characterized by infrared and Raman spectroscopy, as well as by scanning electron microscopy. In addition, the changes on the surface characteristics were determined by contact angle measurements. Finally, the membranes were tested on the photocatalytic degradation of methyl orange (MO). The results obtained indicate that the basic/acid pretreatment allows the generation of active sites in the membrane and that when carrying out the synthesis of TiO2 on the membrane, it can be anchored stably on its surface and through the pores. The microscopies indicate that the structure of the membrane is not compromised by the pretreatment. The amount of TiO2 deposited on the membrane was of 0.1580 ± 0.01773 mg TiO2/cm2 membrane. With this amount of TiO2, a degradation percentage of 98.2% is achieved after 450 min; when the membrane is used for a second cycle, a degradation percentage of 82.0% is obtained, which remains constant for 3 subsequent cycles. This method, which uses the PVDF membrane as a support for TiO2 particles, represents a low-cost and easy-to-prepare insertion procedure, with good degradation percentages, which means that the membrane can be used for subsequent studies in filtration systems in the treatment of effluents from the textile industry.
Collapse
Affiliation(s)
- Fabiola Arias-Ruiz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Gustavo Rangel-Porras
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Guadalupe Falcón-Millán
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Teresa Razo-Lazcano
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México
| | - Pilar González-Muñoz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/N, Guanajuato, Guanajuato, 36040, México.
| |
Collapse
|
6
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Lin Y, Xie A, Xu J, Xue C, Cui J, Pan J. One-Step Hydrothermal Strategy for Preparation of a Self-Cleaning TiO 2/SiO 2 Fiber Membrane toward Oil-Water Separation in a Complex Environment. MEMBRANES 2023; 13:membranes13050514. [PMID: 37233575 DOI: 10.3390/membranes13050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Oil pollution caused by a large number of industrial activities and oil spill accidents has posed serious harm to the environment and human health. However, some challenges remain with the existing separation materials, such as poor stability and fouling resistance. Herein, a TiO2/SiO2 fiber membrane (TSFM) was prepared by a one-step hydrothermal method for oil-water separation in acid, alkali, and salt environments. The TiO2 nanoparticles were successfully grown on the fiber surface, endowing the membrane with superhydrophilicity/underwater superoleophobicity. The as-prepared TSFM exhibits high separation efficiency (above 98%) and separation fluxes (3016.38-3263.45 L·m-2·h-1) for various oil-water mixtures. Importantly, the membrane shows good corrosion resistance in acid, alkaline, and salt solutions and still maintains underwater superoleophobicity and high separation performance. The TSFM displays good performance after repeated separation, demonstrating its excellent antifouling ability. Importantly, the pollutants on the membrane surface can be effectively degraded under light radiation to restore its underwater superoleophobicity, showing the unique self-cleaning ability of the membrane. In view of its good self-cleaning ability and environmental stability, the membrane can be used for wastewater treatment and oil spill recovery and has a broad application prospect in water treatment in complex environments.
Collapse
Affiliation(s)
- Yinghao Lin
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Atian Xie
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Agrochem Laboratory Co., Ltd., Changzhou 213022, China
| | - Jian Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Changguo Xue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiuyun Cui
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Qi T, Yang D, Chen X, Ke W, Qiu M, Fan Y. Sulfonated ceramic membranes with antifouling performance for the filtration of BSA-containing systems. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
10
|
Ye Y, Han Q, Zhao C, Ke W, Qiu M, Chen X, Fan Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Li Y, Yang X, Wen Y, Zhao Y, Yan L, Han G, Shao L. Progress reports of mineralized membranes: Engineering strategies and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
13
|
Yang X, Ma X, Yuan J, Feng X, Zhao Y, Chen L. Enhanced the antifouling and antibacterial performance of
PVC
/
ZnO‐CMC
nanoparticles ultrafiltration membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xin Yang
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xiao Ma
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Jingjing Yuan
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xia Feng
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| | - Yiping Zhao
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| | - Li Chen
- School of Material Science and Engineering Tiangong University Tianjin China
- State Key Laboratory of Separation Membrane and Membrane Processes Tiangong University Tianjin China
| |
Collapse
|
14
|
Zhang J, Jian Z, Jiang M, Peng B, Zhang Y, Wu Z, Zheng J. Influence of Dispersed TiO 2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO 2 Composite Membranes. MEMBRANES 2022; 12:1118. [PMID: 36363673 PMCID: PMC9694972 DOI: 10.3390/membranes12111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, South University of Science and Technology of China, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Department of Electrical Engineering, National Cheng Kung University, No. 1 Daxue Road, Tainan 701401, China
| | - Zicong Jian
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Bo Peng
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
15
|
Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. MEMBRANES 2022; 12:membranes12070675. [PMID: 35877880 PMCID: PMC9317275 DOI: 10.3390/membranes12070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Incorporating polydopamine has become a viable method for membrane modification due to its universality and versatility. Fillers in their different categories have been confirmed as effective elements to improve the properties of membranes such as hydrophilicity, permeability, mechanical strength, and fouling resistance. Thus, this paper mainly highlights the recent studies that have been carried out using polydopamine and nanomaterial fillers simultaneously in modifying the performance of different membranes such as ultrafiltration, microfiltration, nanofiltration, reverse osmosis, and forward osmosis membranes according to the various modification methods. Graphene oxide nanoparticles have recently attracted a lot of attention among different nanoparticles used with polydopamine, due to their impressive characteristics impacts on enhancing membrane hydrophilicity, mechanical strength, and fouling resistance. Thus, the incorporation techniques of graphene oxide nanoparticles and polydopamine for enhancing membranes have been highlighted in this work. Moreover, different studies carried out on using polydopamine as a nanofiller for optimizing membrane performance have been discussed. Finally, perspectives, and possible paths of further research on mussel-inspired polydopamine and nanoparticles co-incorporation are stated according to the progress made in this field. It is anticipated that this review would provide benefits for the scientific community in designing a new generation of polymeric membranes for the treatment of different feed water and wastewater based on adhesive mussel inspired polydopamine polymer and nanomaterials combinations.
Collapse
|
16
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
18
|
Yang Y, Lai Q, Mahmud S, Lu J, Zhang G, Huang Z, Wu Q, Zeng Q, Huang Y, Lei H, Xiong Z. Potocatalytic antifouling membrane with dense nano-TiO2 coating for efficient oil-in-water emulsion separation and self-cleaning. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zhang W, Guo D, Li Z, Shen L, Li R, Zhang M, Jiao Y, Xu Y, Lin H. A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119866] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Calcium alginate and barium alginate hydrogel filtration membrane coated on fibers for molecule/ion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Lovén K, Franzén SM, Isaxon C, Messing ME, Martinsson J, Gudmundsson A, Pagels J, Hedmer M. Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:736-752. [PMID: 32546827 PMCID: PMC8263341 DOI: 10.1038/s41370-020-0241-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 05/14/2023]
Abstract
Today, engineered nanomaterials are frequently used. Nanosized titanium dioxide (TiO2) has been extensively used for many years and graphene is one type of emerging nanomaterial. Occupational airborne exposures to engineered nanomaterials are important to ensure safe workplaces and to extend the information needed for complete risk assessments. The main aim of this study was to characterize workplace emissions and exposure of graphene nanoplatelets, graphene oxide, TiO2 nanofibers (NFs) and nanoparticles (NPs) during down-stream industrial handling. Surface contaminations were also investigated to assess the potential for secondary inhalation exposures. In addition, a range of different sampling and aerosol monitoring methods were used and evaluated. The results showed that powder handling, regardless of handling graphene nanoplatelets, graphene oxide, TiO2 NFs, or NPs, contributes to the highest particle emissions and exposures. However, the exposure levels were below suggested occupational exposure limits. It was also shown that a range of different methods can be used to selectively detect and quantify nanomaterials both in the air and as surface contaminations. However, to be able to make an accurate determination of which nanomaterial that has been emitted a combination of different methods, both offline and online, must be used.
Collapse
Affiliation(s)
- Karin Lovén
- Ergonomics and Aerosol Technology, Lund University, SE-22100, Lund, Sweden.
| | - Sara M Franzén
- Solid State Physics, Lund University, SE-22100, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, SE-22100, Lund, Sweden
| | - Maria E Messing
- Solid State Physics, Lund University, SE-22100, Lund, Sweden
| | - Johan Martinsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, SE-22100, Malmö, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Lund University, SE-22100, Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, SE-22100, Lund, Sweden
| | - Maria Hedmer
- Occupational and Environmental Medicine, Lund University, SE-22100, Lund, Sweden
| |
Collapse
|
22
|
Castro-Muñoz R, González-Melgoza LL, García-Depraect O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. CHEMOSPHERE 2021; 270:129421. [PMID: 33401070 DOI: 10.1016/j.chemosphere.2020.129421] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Membranes, as the primary separation element of membrane-based processes, have greatly attracted the attention of researchers in several water treatment applications, including wastewater treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy metals, among others. Today, the removal of heavy metals from water has become challenging, in which chemical engineers are approaching new materials in membrane technologies. Therefore, the current review elucidates the progress of using different concepts of membranes and potential novel materials for such separations, identifying that polymeric membranes can exhibit a removal efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, the concluding remarks, future perspectives, and strategies for new researchers in the field are given according to the recent findings of this comprehensive review.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process, Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | | | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| |
Collapse
|
23
|
Huang JH, Cheng XQ, Bai Q, Zhang YJ, Wang K, Ma J, Shao L. Ultrafast Poly(sodium methacrylate)-Grafted UiO-66-Incorporated Nanocomposite Membranes Enable Excellent Active Pharmaceutical Ingredient Concentration. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Hui Huang
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xi Quan Cheng
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
- Sino-European Membrane Technology Research Institute Co., Ltd., Weihai 264209, P. R. China
| | - Qing Bai
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Ying Jie Zhang
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Kai Wang
- School of Marine Science and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Jun Ma
- School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
24
|
Mao C, Wang X, Zhang W, Hu B, Deng H. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Wu J, He Y, Zhou L, Yin X, Zhang L, Chen J, Li Z, Bai Y. TiO 2@HNTs Robustly Decorated PVDF Membrane Prepared by a Bioinspired Accurate-Deposition Strategy for Complex Corrosive Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11320-11331. [PMID: 33625835 DOI: 10.1021/acsami.1c00697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As industrialization has spread all around the world, the problems of water pollution such as offshore oil spill and industrial sewage discharge have spread with it. Although many new separation materials have been successfully developed to deal with this crisis, a large number of water treatment materials only focus on the treatment of classified single water pollutant under mild conditions. It is a great challenge to treat soluble contaminants such as water-soluble dyes and insoluble contaminants, for example, emulsified oils simultaneously in a strong corrosive environment. Herein, in this work, corrosive resistance and multifunctional surface on a commercial polyvinylidene difluoride (PVDF) membrane via a tunicate-inspired gallic acid-assisted accurate-deposition strategy is created. Owing to the titanium-carboxylic coordination bonding and accurate-deposition strategy, the as-prepared membrane exhibits extraordinary stability, facing various harsh environmental challenges and incredibly corrosive situations (e.g., 4 M NaOH, 4 M HCl, and saturated NaCl solution). The robust multifunctional surface also endows commercial PVDF membrane with the ability for in situ separation and adsorption of surfactant-stabilized oil-in-water (corrosive and dyed) emulsions with high adsorption efficiencies up to 99.9%, separation efficiencies above 99.6%, and permeation flux as high as 15,698 ± 211 L/(m2·h·bar). Furthermore, the resultant membrane can be regenerated facilely and rapidly by flushing a small amount of HCl (4 M) or NaOH (4 M), making the corrosive resistance membrane attain a long-term and high-efficiency application for complex dyed wastewater treatment. Therefore, the multifunctional membrane has a broad application prospect in the industrial field.
Collapse
Affiliation(s)
- Jingcheng Wu
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan610500, China
| | - Yi He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan610500, China
| | - Liang Zhou
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan610500, China
| | - Xiangying Yin
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan610500, China
| | - Liyun Zhang
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan610500, China
| | - Jingyu Chen
- Chengdu Evermaterials Tec Company, Chengdu, Sichuan610500, China
| | - Zhenyu Li
- Chengdu Evermaterials Tec Company, Chengdu, Sichuan610500, China
| | - Yang Bai
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan610500, China
| |
Collapse
|
26
|
Feng Y, Guo N, Ren S, Xie X, Xu J, Wang Y. AgNPs@ZIF‐8 Hybrid Material‐Modified Polyethersulfone Microfiltration Membranes for Antibiofouling Property and Permeability Improvement. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Feng
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong University of Science and Technology College of Mining and Safety Engineering 266590 Qingdao Shandong China
| | - Ning Guo
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong Jianzhu University School of Municipal and Environmental Engineering 250101 Jinan China
| | - Shaojie Ren
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| | - Xuan Xie
- IHE Delft Institute for Water Education 2622 HD Delft The Netherlands
| | - Juan Xu
- East China Normal University Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration School of Ecological and Environmental Sciences Shanghai China
| | - Yunkun Wang
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| |
Collapse
|
27
|
|
28
|
Zhao S, Zhan Y, Wan X, He S, Yang X, Hu J, Zhang G. Selective and efficient adsorption of anionic dyes by core/shell magnetic MWCNTs nano-hybrid constructed through facial polydopamine tailored graft polymerization: Insight of adsorption mechanism, kinetic, isotherm and thermodynamic study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Samree K, Srithai PU, Kotchaplai P, Thuptimdang P, Painmanakul P, Hunsom M, Sairiam S. Enhancing the Antibacterial Properties of PVDF Membrane by Hydrophilic Surface Modification Using Titanium Dioxide and Silver Nanoparticles. MEMBRANES 2020; 10:membranes10100289. [PMID: 33076583 PMCID: PMC7602841 DOI: 10.3390/membranes10100289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
Abstract
This work investigates polyvinylidene fluoride (PVDF) membrane modification to enhance its hydrophilicity and antibacterial properties. PVDF membranes were coated with nanoparticles of titanium dioxide (TiO2-NP) and silver (AgNP) at different concentrations and coating times and characterized for their porosity, morphology, chemical functional groups and composition changes. The results showed the successfully modified PVDF membranes containing TiO2-NP and AgNP on their surfaces. When the coating time was increased from 8 to 24 h, the compositions of Ti and Ag of the modified membranes were increased from 1.39 ± 0.13 to 4.29 ± 0.16 and from 1.03 ± 0.07 to 3.62 ± 0.08, respectively. The water contact angle of the membranes was decreased with increasing the coating time and TiO2-NP/AgNP ratio. The surface roughness and permeate fluxes of coated membranes were increased due to increased hydrophilicity. Antimicrobial and antifouling properties were investigated by the reduction of Escherichia coli cells and the inhibition of biofilm formation on the membrane surface, respectively. Compared with that of the original PVDF membrane, the modified membranes exhibited antibacterial efficiency up to 94% against E. coli cells and inhibition up to 65% of the biofilm mass reduction. The findings showed hydrophilic improvement and an antimicrobial property for possible wastewater treatment without facing the eminent problem of biofouling.
Collapse
Affiliation(s)
- Kajeephan Samree
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
| | - Pen-umpai Srithai
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
| | - Panaya Kotchaplai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pisut Painmanakul
- Department of Environmental Engineering, Faculty of Engineer, Chulalongkorn University, Bangkok 10300, Thailand;
- Research Program on Development of Technology and Management Guideline for Green Community, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
- Research Unit on Technology for Oil Spill and Contamination Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mali Hunsom
- Academy of Science, The Royal Society of Thailand, Office of the Royal Society, Dusit, Bangkok 10300, Thailand;
| | - Sermpong Sairiam
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (P.-u.S.)
- Correspondence:
| |
Collapse
|
30
|
Lu Y, Qin Z, Wang N, Guo H, An Q, Liang Y. TiO2-incorporated polyelectrolyte composite membrane with transformable hydrophilicity/hydrophobicity for nanofiltration separation. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00842-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Effect of TiO2 content on the properties of polysulfone nanofiltration membranes modified with a layer of TiO2–graphene oxide. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116770] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Monovalent/Divalent salts separation via thin film nanocomposite nanofiltration membrane containing aminated TiO2 nanoparticles. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Mu Y, Feng H, Zhang S, Zhang C, Lu N, Luan J, Wang G. Development of highly permeable and antifouling ultrafiltration membranes based on the synergistic effect of carboxylated polysulfone and bio-inspired co-deposition modified hydroxyapatite nanotubes. J Colloid Interface Sci 2020; 572:48-61. [DOI: 10.1016/j.jcis.2020.03.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
|
35
|
Shao H, Cheng J, Kang D, Qin S. Fabrication of a novel hollow fiber composite membrane with a double-layer structure for enhanced water treatment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Chen H, Zheng S, Meng L, Chen G, Luo X, Huang M. Comparison of novel functionalized nanofiber forward osmosis membranes for application in antibacterial activity and TRGs rejection. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122250. [PMID: 32086089 DOI: 10.1016/j.jhazmat.2020.122250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance genes (ARGs) are serious pollutants in municipal sewage treatment plants and may cause significant harm to ecological systems, microbial fouling is also inevitable in membrane process. Herein, novel forward osmosis (FO) membranes made of electrospun nanofibers (TFN0) and further impregnated with titanium dioxide (TiO2) (TFN1) nanoparticles and titanium dioxide/silver composite nanoparticles (TiO2/AgNPs) (TFN2). The FO membranes were used to compare the antimicrobial performance and rejection of tetracycline-resistant genes (TRGs). Characterizations revealed that the TiO2/AgNPs were evenly scattered in the polysulfone (PSf) nanofibers and resulted in a TFN2 membrane that exhibited excellent physicochemical properties, filtration, and antibiofouling performance in real wastewater. The cell viability analysis revealed that the antibacterial effect of the TFN2 membranes was significantly better than that of TFN1, as indicated by about 65 % of E. coli cells killed after contact with the TFN2 membrane. TFN2 membranes had greater rejection rates of TRB and TRGs than TFN1. The TRG permeation rates of the TFN2 membrane in the FO mode (active layer facing the feed solution) were 39.62 % and 33.02 % lower than the TFN0 and TFN1 membranes, respectively. FO membranes modified by the TiO2/AgNPs nanocomposites hold promise to remove ARGs and pathogens from wastewater treatment plant effluents.
Collapse
Affiliation(s)
- Haisheng Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, 410100, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Gang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
37
|
Ibrahim Q, Akbarzadeh R. A photocatalytic TiO 2/graphene bilayer membrane design for water desalination: a molecular dynamic simulation. J Mol Model 2020; 26:165. [PMID: 32500208 DOI: 10.1007/s00894-020-04422-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022]
Abstract
The research about finding the effective membrane material is in progress; however, there are pros and cons for each material. Graphene membrane is a single layer of atoms in a two-dimensional hexagonal lattice which achieved high performance in water purification field. Addition of TiO2 to the graphene membrane has been studied for the membrane modifications due to its high stability and photocatalytic performance. In this study, graphene/TiO2 bilayer nanocomposite membrane has been simulated to enhance the mechanical and electronic properties of graphene membrane. Anatase TiO2 (A-TiO2), rutile TiO2 (R-TiO2), and their composite with graphene (G) have been simulated to evaluate the stability of the nanocomposite bilayers in water desalination for higher salt rejection percentage and water permeation. The membrane structure has been created and optimized using the geometry optimization task. The simulation of electronic and mechanical properties has been done by using Material Studio 2019. TiO2 consisting rutile and anatase phases showed a band gap of 2.248 eV, which was reduced to 1.175 eV in combination with graphene. The bilayer composite of TiO2 and graphene achieved higher membrane stability, and the salt rejection was 98% under applied pressure of 100 MPa. The graphene/TiO2 bilayer nanocomposite membranes have been evaluated by simulation for water desalination process using molecular dynamics by ReaxFF software. In comparison with a graphene membrane, the results showed an increment in salt rejection and water permeability under different applied pressure.
Collapse
Affiliation(s)
- Qusai Ibrahim
- Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006, South Africa
| | - Rokhsareh Akbarzadeh
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
38
|
Al-Ani FH, Alsalhy QF, Raheem RS, Rashid KT, Figoli A. Experimental Investigation of the Effect of Implanting TiO 2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. MEMBRANES 2020; 10:E77. [PMID: 32326206 PMCID: PMC7231373 DOI: 10.3390/membranes10040077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/02/2022]
Abstract
This study investigated the impact of implanting TiO2-NPs within a membrane to minimize the influence of long-term operation on the membrane characteristics. Four poly vinyle chloride-titanium oxide (PVC-TiO2-NPs) membranes were prepared to create an ultrafiltration membrane (UF) that would effectively treat actual refinery wastewater. The hypothesis of this work was that TiO2-NPs would function as a hydrophilic modification of the PVC membrane and excellent self-cleaning material, which in turn would greatly extend the membrane's lifetime. The membranes were characterized via Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscope (AFM), and scanning electron microscope (SEM). The removal efficiency of turbidity, total suspended solid (TSS), oil and grease, heavy metals and chemical oxygen demand (COD) were investigated. Contact angle (CA) reduced by 12.7% and 27.5% on the top and bottom surfaces, respectively. The PVC membrane with TiO2-NPs had larger mean pore size on its surface and more holes with larger size inside the membrane structure. The addition of TiO2-NPs could remarkably enhance the antifouling property of the PVC membrane. The pure water permeability (PWP) of the membrane was enhanced by 95.3% with an increase of TiO2 to 1.5 gm/100gm. The PWP after backwashing was reduced from 22.3% for PVC to 10.1% with 1.5 gm TiO2-NPs. The long-term performance was improved from five days for PVC to 23 d with an increase in TiO2-NPs to 1.5 gm. The improvements of PVC-TiO2-NPs long-term were related to the enhancement of the hydrophilic character of the membrane and increase tensile strength due to the reinforcement effect of TiO2-NPs. These results clearly identify the impact of the TiO2-NPs content on the long-term PVC/TiO2-NPs performance and confirm our hypothesis that it is possible to use TiO2-NPs to effectively enhance the lifetime of membranes during their long-term operation.
Collapse
Affiliation(s)
- Faris H. Al-Ani
- Civil Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (F.H.A.-A.); (R.S.R.)
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq;
| | - Rawia Subhi Raheem
- Civil Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (F.H.A.-A.); (R.S.R.)
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq;
| | - Alberto Figoli
- Institute on Membrane Technology, National Research Council (ITM-CNR), 87030 Rende (CS), Italy;
| |
Collapse
|
39
|
Gao N, Fan W, Xu ZK. Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Zeng G, Wei K, Yang D, Yan J, Zhou K, Patra T, Sengupta A, Chiao YH. Improvement in performance of PVDF ultrafiltration membranes by co-incorporation of dopamine and halloysite nanotubes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Yu C, Gao B, Wang W, Xu X, Yue Q. Alleviating membrane fouling of modified polysulfone membrane via coagulation pretreatment/ultrafiltration hybrid process. CHEMOSPHERE 2019; 235:58-69. [PMID: 31255766 DOI: 10.1016/j.chemosphere.2019.06.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
In this study, ultrafiltration membrane fouling was alleviated by hydrophilic modification and coagulation pretreatment. A polydopamine (PDA) layer was used as a bridge to introduce the nano titanium dioxide (TiO2) onto the polysulfone (PSf) membranes, forming a hydrophilic modified layer. A relationship model was established between the coagulation efficiencies and floc properties and membrane fouling of the modified PSf membranes during the coagulation/ultrafiltration (C-UF) process. The combination styles of flocculants, poly dimethyldiallylammonium chloride (PDMDAAC) and polyaluminum chloride (PAC) were used in C-UF hybrid process. The characterization results indicated that the hydrophilicity was significantly enhanced in the modified PSf membranes. Scanning electron microscopy (SEM) tests proved that the PDA layer could be tightly bound to TiO2 by coordination bond onto PSf membrane surface. In the acidic conditions, more TiO2 nano-particles were adhered on the PDA particles surface as the pH of (NH4)2TiF6 solution was increased, which resulted in higher hydrophilicity of membranes. In addition, the C-UF tests exhibited that the coagulation efficiency was greatly improved in the PAC/PDMDAAC system, and the PSf membrane modified by PDA/TiO2 in UF tests significantly reduced the membrane fouling, this was partially due to the formation of TiO2 modified coating with higher hydrophilicity.
Collapse
Affiliation(s)
- Chenghui Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China.
| | - Wenyu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| |
Collapse
|
42
|
|
43
|
Morphological, Electrical, and Chemical Characteristics of Poly(sodium 4-styrenesulfonate) Coated PVDF Ultrafiltration Membranes after Plasma Treatment. Polymers (Basel) 2019; 11:polym11101689. [PMID: 31618983 PMCID: PMC6836023 DOI: 10.3390/polym11101689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 11/17/2022] Open
Abstract
A commercial ultrafiltration (UF) membrane (HFM-183 de Koch Membrane Systems) made of poly(vinylidene fluoride) (PVDF), was recovered with a negatively-charged polyelectrolyte (poly(sodium 4-styrenesulfonate)) (PSS), and the effects on its electric, chemical, and morphological properties were analyzed. Atomic force microscopy (AFM), liquid–liquid displacement porometry, Electrical Impedance Spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to investigate the modifications induced by the deposition of PSS on the PVDF positively-charged membrane and after its treatment by a radio frequency Ar-plasma. These techniques confirmed a real deposition and posterior compaction of PSS with increasing roughness and decreasing pore sizes. The evolution of the electric resistances of the membranes confirmed crosslinking and compaction with shielding of the sulfonated groups from PSS. In this way, a membrane with a negatively-charged active layer and a pore size which was 60% lower than the original membrane was obtained. The composition of the additive used by manufacturers to modify PVDF to make it positively charged was obtained by different procedures, all of which depended upon the results of X-ray photoelectron spectroscopy, leading to fairly consistent results. This polymer, carrying positive charges, contains quaternary nitrogen, as confirmed by XPS. Moreover, Raman spectroscopy confirmed that PVDF changes from mostly the β to the α phase, which is more stable as a substrate for the deposited PSS. The aim of the tested modifications was to increase the retention of divalent anions without reducing permeability.
Collapse
|
44
|
Han N, Yang C, Zhang Z, Wang W, Zhang W, Han C, Cui Z, Li W, Zhang X. Electrostatic Assembly of a Titanium Dioxide@Hydrophilic Poly(phenylene sulfide) Porous Membrane with Enhanced Wetting Selectivity for Separation of Strongly Corrosive Oil-Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35479-35487. [PMID: 31466446 DOI: 10.1021/acsami.9b12252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The efficient treatment of oil-water emulsions in extreme environments, such as strongly acidic and alkaline media, remains a widespread concern. Poly(phenylene sulfide) (PPS)-based porous membranes with excellent resistance to chemicals and solvents are promising for settling this challenge. However, the limited hydrophilicity and the poor hydrated ability of the hydrophilic PPS (h-PPS) membranes reported in the literature prevents them from separating oil-water emulsions with high efficiency, large fluxes, and good antifouling performances. In this study, a firm rough TiO2 layer is constructed on a h-PPS membrane via electrostatic assembly to improve the surface hydrophilization. The introduction of the TiO2 layer increases the wetting selectivity and decreases the oil adhesion, which makes it capable to efficiently treat oil-in-water emulsions (efficiency > 98%). Most importantly, the underwater critical oil intrusion pressure almost doubled after the incorporation of the TiO2 layer, which allows the membrane to withstand pressurized filtration, achieving a high flux of ∼4000 L m-2 h-1. This is more than 2 orders of magnitude larger than the flux of the reported h-PPS. Furthermore, the TiO2@h-PPS membrane displays long-term stability in separating oil-water emulsions in strong acid and strong alkali, showing a promising prospect for the treatment of strongly corrosive emulsions.
Collapse
Affiliation(s)
- Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Textile Engineering, Chemistry and Science Department , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Chao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Zongxuan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Weijing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wenxin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Changye Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| |
Collapse
|
45
|
Abstract
A new hybrid photocatalytic membrane reactor that can easily be scaled-up was designed, assembled and used to test photocatalytic membranes developed using the sol–gel technique. Extremely high removals of total suspended solids, chemical oxygen demand, total organic carbon, phenolic and volatile compounds were obtained when the hybrid photocatalytic membrane reactor was used to treat olive mill wastewaters. The submerged photocatalytic membrane reactor proposed and the modified membranes represent a step forward towards the development of new advanced treatment technology able to cope with several water and wastewater contaminants.
Collapse
|
46
|
Pinem J, Wardani A, Aryanti P, Khoiruddin K, Wenten IG. Hydrophilic Modification of Polymeric Membrane using Graft Polymerization Method: A Mini Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/547/1/012054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
A loose NF membrane by grafting TiO2-HMDI nanoparticles on PES/β-CD substrate for dye/salt separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Preparation and Characterization of Multi-layer Poly(arylene sulfide sulfone) Nanofibers Membranes for Liquid Filtration. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2280-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Li R, Liu J, Shi A, Luo X, Lin J, Zheng R, Fan H, Selasie SV, Lin H. A facile method to modify polypropylene membrane by polydopamine coating via inkjet printing technique for superior performance. J Colloid Interface Sci 2019; 552:719-727. [PMID: 31176918 DOI: 10.1016/j.jcis.2019.05.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
Membrane surface functionalization based on mussel-inspired polydopamine (PDA) deposition for enhancing antifouling ability has attracted considerable attention. However, high cost of dopamine (DA) and long-time of reaction during self-polymerization of DA in aqueous solution remain the major problems impeding its practical application. This study provided a first report on a low-cost and facile membrane modification approach based on inkjet printing of DA and sodium periodate (SP) to rapidly deposit PDA on polypropylene (PP) membrane. Compared with the pristine PP membrane and DA printed PP membrane, the PDA-SP coated PP membrane demonstrated superior hydrophilicity (67.2°), high pure water permeability (2156.8 L·m-2·h-1) and antifouling property, due to the improved oxidation degree of PDA. Moreover, the modified membrane possesses good chemical stability in aqueous solution over the wide range of pH 2-9. The inkjet printing integrated oxidant-induced mussel-inspired modification proposed in this study is substrate-independent, and can be applied to various geometries and materials, showing broad application prospects in membrane fabrication.
Collapse
Affiliation(s)
- Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jinxia Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - An Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiaoqian Luo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jincong Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Ran Zheng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hangxu Fan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Semekor Vincent Selasie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|