1
|
Vargas R, Lizano-Barrantes C, Romero M, Valencia-Clua K, Narváez-Narváez DA, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E, Martinez-Martinez N, Hernández-Munain C, Suñé C, Suñé-Pou M. The piper at the gates of brain: A systematic review of surface modification strategies on lipid nanoparticles to overcome the Blood-Brain-Barrier. Int J Pharm 2024; 665:124686. [PMID: 39265851 DOI: 10.1016/j.ijpharm.2024.124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The Blood-Brain Barrier (BBB) significantly impedes drug delivery to the central nervous system. Nanotechnology, especially surface-functionalized lipid nanoparticles, offers innovative approaches to overcome this barrier. However, choosing an effective functionalization strategy is challenging due to the lack of detailed comparative analysis in current literature. Our systematic review examined various functionalization strategies and their impact on BBB permeability from 2041 identified articles, of which 80 were included for data extraction. Peptides were the most common modification (18) followed by mixed strategies (12) proteins (9), antibodies (7), and other strategies (8). Interestingly, 26 studies showed BBB penetration with unmodified or modified nanoparticles using commonly applied strategies such as PEGylation or surfactant addition. Statistical analysis across 42 studies showed correlation between higher in vivo permeation improvements and nanoparticle type, size, and functionalization category. The highest ratios were found for nanostructured lipid carriers or biomimetic systems, in studies with particle sizes under 150 nm, and in those applying mixed functionalization strategies. The interstudy heterogeneity we observed highlights the importance of adopting standardized evaluation protocols to enhance comparability. Our systematic review aims to provide a comparative insight and identify future research directions in the development of more effective lipid nanoparticle systems for drug delivery to the brain to help improve the treatment of neurological and psychiatric disorders and brain tumours.
Collapse
Affiliation(s)
- Ronny Vargas
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica.
| | - Catalina Lizano-Barrantes
- Department of Pharmaceutical Care and Clinical Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica
| | - Miquel Romero
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kevin Valencia-Clua
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David A Narváez-Narváez
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep Ma Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Encarna García-Montoya
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Noelia Martinez-Martinez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain.
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
2
|
Inwood S, Cheng K, Betenbaugh MJ, Shiloach J. Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production. Methods Mol Biol 2024; 2810:317-327. [PMID: 38926288 DOI: 10.1007/978-1-0716-3878-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here, we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays, and the validation transfection to identify genes involved with protein expression.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA
| | - Ken Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int J Biol Macromol 2023; 229:305-320. [PMID: 36535359 DOI: 10.1016/j.ijbiomac.2022.12.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The role of the blood-brain barrier (BBB) is to control trafficking of biomolecules and protect the brain. This function can be compromised by pathological conditions. Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates (αSN-AGs) such as oligomers and fibrils, which contribute to disease progression and severity. Here we study how αSN-AGs affect the BBB in in vitro co-culturing models consisting of human brain endothelial hCMEC/D3 cells (to overcome inter-species differences) alone and co-cultured with astrocytes and neurons/glial cells. When cultivated on their own, hCMEC/D3 cells were compromised by αSN-AGs, which decreased cellular viability, mitochondrial membrane potential, wound healing activity, TEER value, and enhanced permeability, as well as increased the levels of ROS and NO. Co-culturing of these cells with activated microglia also increased BBB impairment according to TEER and systemic immune cell transmigration assays. In contrast, hCMEC/D3 cells co-cultured with astrocytes or dopaminergic neurons or simultaneously treated with their conditioned media showed increased resistance against αSN-AGs. Our work demonstrates the complex relationship between members of the neurovascular unit (NVU) (perivascular astrocytes, neurons, microglia, and endothelial cells), αSN-AGs and BBB.
Collapse
|
4
|
Coughlin DG, Litvan I. Investigational therapeutics for the treatment of progressive supranuclear palsy. Expert Opin Investig Drugs 2022; 31:813-823. [DOI: 10.1080/13543784.2022.2087179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA
| |
Collapse
|
5
|
Coughlin DG, Litvan I. Progressive supranuclear palsy: Advances in diagnosis and management. Parkinsonism Relat Disord 2020; 73:105-116. [PMID: 32487421 PMCID: PMC7462164 DOI: 10.1016/j.parkreldis.2020.04.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Progressive supranuclear palsy (PSP) is a complex clinicopathologic disease with no current cure or disease modulating therapies that can only be definitively confirmed at autopsy. Growing understanding of the phenotypic diversity of PSP has led to expanded clinical criteria and new insights into etiopathogenesis that coupled with improved in vivo biomarkers makes increased access to current clinical trials possible. Current standard-of-care treatment of PSP is multidisciplinary, supportive and symptomatic, and several trials of potentially disease modulating agents have already been completed with disappointing results. Current ongoing clinical trials target the abnormal aggregation of tau through a variety of mechanisms including immunotherapy and gene therapy offer a more direct method of treatment. Here we review PSP clinicopathologic correlations, in vivo biomarkers including MRI, PET, and CSF biomarkers. We additionally review current pharmacologic and non-pharmacologic methods of treatment, prior and ongoing clinical trials in PSP. Newly expanded clinical criteria and improved specific biomarkers will aid in identifying patients with PSP earlier and more accurately and expand access to these potentially beneficial clinical trials.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
6
|
Singh RP, Hidalgo T, Cazade PA, Darcy R, Cronin MF, Dorin I, O’Driscoll CM, Thompson D. Self-Assembled Cationic β-Cyclodextrin Nanostructures for siRNA Delivery. Mol Pharm 2019; 16:1358-1366. [DOI: 10.1021/acs.molpharmaceut.8b01307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Tania Hidalgo
- School of Pharmacy, Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Raphael Darcy
- School of Pharmacy, Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
| | - Michael F. Cronin
- School of Pharmacy, Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
| | - Irina Dorin
- Malvern Panalytical Ltd., Grovewood Road, Malvern, Worcestershire WR14 1XZ, U.K
| | | | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
7
|
Lu Q, Cai X, Zhang X, Li S, Song Y, Du D, Dutta P, Lin Y. Synthetic Polymer Nanoparticles Functionalized with Different Ligands for Receptor-mediated Transcytosis across Blood-Brain Barrier. ACS APPLIED BIO MATERIALS 2018; 1:1687-1694. [PMID: 31815251 DOI: 10.1021/acsabm.8b00502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymeric nanoparticles have been investigated as biocompatible and promising nano-carriers to deliver drugs across the blood-brain barrier (BBB). However, most of the polymeric nanoparticles cannot be observed without attaching them with fluorescent dyes. Generally complex synthesis process is required to attach fluorescent dye tracing molecules with drug carrier nanoparticles. In this paper, we synthesized a novel fluorescent polymer based on poly [Triphenylamine-4-vinyl-(P-methoxy-benzene)] (TEB). This polymer was prepared from TEB polymer through coprecipitation. Furthermore, three types of ligands, transferrin (TfR), lactoferrin (LfR) and lipoprotein (LRP), were covalently attached on the nanoparticle surface to improve the BBB transport efficiency. All of prepared TEB-based nanoparticles were biocompatible, exhibited excellent fluorescence properties and could be observed in vivo. The transcellular transportation of these TEB-based nanoparticles across the BBB was evaluated by observing the fluorescent intensity. The translocation study was performed in an in vitro BBB model that were constructed based on mouse cerebral endothelial cells (bEnd.3). The results showed that ligand-coated TEB nanoparticles can be transported across BBB with high efficiencies (up to 29.02%). This is the first time that the fluorescent TEB nanoparticles were applied as nano-carriers for transport across the BBB. Such fluorescent polymeric nanoparticles have the potential applications in brain imaging or drug delivery.
Collapse
Affiliation(s)
- Qian Lu
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Xiaoli Cai
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Xian Zhang
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Suiqiong Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Yang Song
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Prashanta Dutta
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Tauopathies represent a spectrum of incurable and progressive age-associated neurodegenerative diseases that currently are diagnosed definitively only at autopsy. Few clinical diagnoses, such as classic Richardson's syndrome of progressive supranuclear palsy, are specific for underlying tauopathy and no clinical syndrome is fully sensitive to reliably identify all forms of clinically manifest tauopathy. Thus, a major unmet need for the development and implementation of tau-targeted therapies is precise antemortem diagnosis. This article reviews new and emerging diagnostic therapies for tauopathies including novel imaging techniques and biomarkers and also reviews recent tau therapeutics. RECENT FINDINGS Building evidence from animal and cell models suggests that prion-like misfolding and propagation of pathogenic tau proteins between brain cells are central to the neurodegenerative process. These rapidly growing developments build rationale and motivation for the development of therapeutics targeting this mechanism through altering phosphorylation and other post-translational modifications of the tau protein, blocking aggregation and spread using small molecular compounds or immunotherapy and reducing or silencing expression of the MAPT tau gene. New clinical criteria, CSF, MRI, and PET biomarkers will aid in identifying tauopathies earlier and more accurately which will aid in selection for new clinical trials which focus on a variety of agents including immunotherapy and gene silencing.
Collapse
Affiliation(s)
- David Coughlin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Inwood S, Betenbaugh MJ, Lal M, Shiloach J. Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production. Methods Mol Biol 2018; 1850:209-219. [PMID: 30242689 PMCID: PMC9563094 DOI: 10.1007/978-1-4939-8730-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays and the validation transfection to identify genes involved with protein expression.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Madhu Lal
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|