1
|
Hossain I, Kim KI, Husna A, Kang JH, Kim TH, Park HB. Metal-Coordinated, Dual-Crosslinked PIM Polymer Membranes for Upgraded CO 2 Separation: Aging and Plasticization Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407973. [PMID: 39487649 DOI: 10.1002/smll.202407973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 11/04/2024]
Abstract
The practical use of polymers of intrinsic microporosity (PIMs) in CO2 separation is often hindered by their moderate selectivity, performance instability over time, and pressure constraints. To address these limitations, a straightforward approach is presented to enhance the CO2 separation capability of PIM-1 by incorporating metal ions into uniformly hydrolyzed PIM-1 (cPIM). This dual linking strategy, achieved via ionic and coordination bonding of metal ions with the polymeric side chains including ─COOH and ─CONH2, restructures the polymer, disrupting hydrogen bonds between cPIM chains and creating active sites for CO2 via π-complexation. This modification enhances gas permeability while maintaining high selectivity. The optimized zinc-coordinated membrane achieves an impressive CO2 permeability of ≈2,500 Barrer with CO2/N2 and CO2/CH4 selectivities of 27.1 and 23, respectively, outperforming pristine cPIM (700 Barrer; CO2/N2 = 27; CO2/CH4 = 19). Notably, this performance surpasses the 2008 Robeson upper-bound limits for both gas pairs. Additionally, the metal-coordinated membranes exhibit remarkable long-term stability, resisting aging effects for up to 20 days and maintaining anti-plasticization properties at pressures up to 20 bar. These dual-crosslinked membranes demonstrate promising potential for mixed gas separation, indicating their suitability for real-world industrial applications.
Collapse
Affiliation(s)
- Iqubal Hossain
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kwan Il Kim
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Asmaul Husna
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jun Hyeok Kang
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Hyun Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Hossain I, Husna A, Yoo SY, Kim KI, Kang JH, Park I, Lee BK, Park HB. Tailoring the Structure-Property Relationship of Ring-Opened Metathesis Copolymers for CO 2-Selective Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26743-26756. [PMID: 38733403 DOI: 10.1021/acsami.4c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
In this work, we explore the use of ring-opening metathesis polymerization (ROMP) facilitated by a second-generation Grubbs catalyst (G2) for the development of advanced polymer membranes aimed at CO2 separation. By employing a novel copolymer blend incorporating 4,4'-oxidianiline (ODA), 1,6-hexanediamine (HDA), 1-adamantylamine (AA), and 3,6,9-trioxaundecylamine (TA), along with a CO2-selective poly(ethylene glycol)/poly(propylene glycol) copolymer (Jeffamine2003) and polydimethylsiloxane (PDMS) units, we have synthesized membranes under ambient conditions with exceptional CO2 separation capabilities. The strategic inclusion of PDMS, up to a 20% composition within the PEG/PPG matrix, has resulted in copolymer membranes that not only surpass the 2008 upper limit for CO2/N2 separation but also meet the commercial targets for CO2/H2 separation. Comprehensive analysis reveals that these membranes adhere to the mixing rule and exhibit percolation behavior across the entire range of compositions (0-100%), maintaining robust antiplasticization performance even under pressures up to 20 atm. Our findings underscore the potential of ROMP in creating precisely engineered membranes for efficient CO2 separation, paving the way for their application in large-scale environmental and industrial processes.
Collapse
Affiliation(s)
- Iqubal Hossain
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Asmaul Husna
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Yeon Yoo
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kwan Il Kim
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jun Hyeok Kang
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Inho Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Byung Kwan Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Ester-crosslinked Polymers of Intrinsic Microporosity Membranes with Enhanced Plasticization Resistance for CO2 Separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Aloraini S, Mathias M, Crone J, Bryce K, Yu M, Kirk RA, Ahmad MZ, Asuquo ED, Rico-Martínez S, Volkov AV, Foster AB, Budd PM. Crosslinking of Branched PIM-1 and PIM-Py Membranes for Recovery of Toluene from Dimethyl Sulfoxide by Pervaporation. ACS APPLIED POLYMER MATERIALS 2023; 5:1145-1158. [PMID: 36817336 PMCID: PMC9926464 DOI: 10.1021/acsapm.2c01600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Branched forms of the archetypal polymer of intrinsic microporosity PIM-1 and the pyridinecarbonitrile-containing PIM-Py may be crosslinked under ambient conditions by palladium(II) acetate. Branched PIM-1 can arise in polymerizations of 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane with tetrafluoroterephthalonitrile conducted at a high set temperature (160 °C) under conditions, such as high dilution, that lead to a lower-temperature profile over the course of the reaction. Membranes of PIM-1 and PIM-Py crosslinked with palladium acetate are sufficiently stable in organic solvents for use in the recovery of toluene from its mixture with dimethyl sulfoxide (DMSO) by pervaporation at 65 °C. With both PIM-1 and PIM-Py membranes, pervaporation gives high toluene/DMSO separation factors (around 10 with a 77 vol % toluene feed). Detailed analysis shows that the membranes themselves are slightly selective for DMSO and it is the high driving force for toluene evaporation that drives the separation.
Collapse
Affiliation(s)
- Sulaiman Aloraini
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass52571, Saudi Arabia
| | - Michael Mathias
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Jessica Crone
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Kurtis Bryce
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Ming Yu
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
- Department
of Chemical Engineering, The University
of Melbourne, Melbourne, VIC3010, Australia
| | - Richard A. Kirk
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Mohd Zamidi Ahmad
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Edidiong D. Asuquo
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | | | - Alexey V. Volkov
- A.
V. Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Avenue, Moscow119991, Russian
Federation
| | - Andrew B. Foster
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Peter M. Budd
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
5
|
Wang L, Zhong W, Yu A. Simulation of O2/N2 behaviors on multi-component polymeric membranes in oxy-fuel combustion system. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Shen Q, Cong S, Zhu J, Zhang Y, He R, Yi S, Zhang Y. Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Mohsenpour S, Ameen AW, Leaper S, Skuse C, Almansour F, Budd PM, Gorgojo P. PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu Y, McGuinness EK, Jean BC, Li Y, Ren Y, Rio BGD, Lively RP, Losego MD, Ramprasad R. Vapor-Phase Infiltration of Polymer of Intrinsic Microporosity 1 (PIM-1) with Trimethylaluminum (TMA) and Water: A Combined Computational and Experimental Study. J Phys Chem B 2022; 126:5920-5930. [PMID: 35920864 DOI: 10.1021/acs.jpcb.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vapor-phase infiltration, a postpolymerization modification process, has demonstrated the ability to create organic-inorganic hybrid membranes with excellent stability in organic solvents while maintaining critical membrane properties of high permeability and selectivity. However, the chemical reaction pathways that occur during VPI and their implications on the hybrid membrane stability are poorly understood. This paper combines in situ quartz crystal microbalance gravimetry (QCM) and ex situ chemical characterization with first-principles simulations at the atomic scale to study each processing step in the infiltration of polymer of intrinsic microporosity 1 (PIM-1) with trimethylaluminum (TMA) and its co-reaction with water vapor. Building upon results from in situ QCM experiments and SEM/EDX, which find TMA remains within PIM-1 even under long desorption times, density functional theory (DFT) simulations identify that an energetically stable coordination forms between the metal-organic precursor and PIM-1's nitrile functional group during the precursor exposure step of VPI. In the subsequent water vapor exposure step, the system undergoes a series of exothermic reactions to form the final hybrid membrane. DFT simulations indicate that these reaction pathways result in aluminum oxyhydroxide species consistent with ex situ XPS and FTIR characterization. Both NMR and DFT simulations suggest that the final aluminum structure is primarily 6-fold coordinated and that the aluminum is at least dimerized, if not further "polymerized". According to the simulations, coordination of the aluminum with at least one nitrile group from the PIM-1 appears to weaken significantly as the final inorganic structure emerges but remains present to enable the formation of the 6-fold coordination species. Water molecules are proposed to complete the coordination complex without further increasing the aluminum's oxidation state. This study provides new insights into the infiltration process and the chemical structure of the final hybrid membrane including support for the possible mechanism of solvent stability.
Collapse
Affiliation(s)
- Yifan Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Emily K McGuinness
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Benjamin C Jean
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Yi Li
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Yi Ren
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive North West, Atlanta, Georgia 30332-0100, United States
| | - Beatriz G Del Rio
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive North West, Atlanta, Georgia 30332-0100, United States
| | - Mark D Losego
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
|
10
|
Tang A, Feng W, Fang C, Li J, Yang X, Zhu L. Polyarylester thin films with narrowed pore size distribution via metal-phenolic network modulated interfacial polymerization for precise separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhao H, Xie Q, Ding X, Cai R, Tan X, Zhang Y. Advanced mixed matrix membranes of Pebax embedded with amino acid ionic liquids@PIM core-shell composite nanoparticles for CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ahmad MZ, Castro-Muñoz R, Budd PM. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. NANOSCALE 2020; 12:23333-23370. [PMID: 33210671 DOI: 10.1039/d0nr07042d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, M13 9PL, UK.
| | | | | |
Collapse
|
16
|
Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A, Zhang L, Jiang Z, Chen Z. Microporous framework membranes for precise molecule/ion separations. Chem Soc Rev 2020; 50:986-1029. [PMID: 33226395 DOI: 10.1039/d0cs00552e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microporous framework membranes such as metal-organic framework (MOF) membranes and covalent organic framework (COF) membranes are constructed by the controlled growth of small building blocks with large porosity and permanent well-defined micropore structures, which can overcome the ubiquitous tradeoff between membrane permeability and selectivity; they hold great promise for the enormous challenging separations in energy and environment fields. Therefore, microporous framework membranes are endowed with great expectations as next-generation membranes, and have evolved into a booming research field. Numerous novel membrane materials, versatile manipulation strategies of membrane structures, and fascinating applications have erupted in the last five years. First, this review summarizes and categorizes the microporous framework membranes with pore sizes lower than 2 nm based on their chemistry: inorganic microporous framework membranes, organic-inorganic microporous framework membranes, and organic microporous framework membranes, where the chemistry, fabrications, and differences among these membranes have been highlighted. Special attention is paid to the membrane structures and their corresponding modifications, including pore architecture, intercrystalline grain boundary, as well as their diverse control strategies. Then, the separation mechanisms of membranes are covered, such as diffusion-selectivity separation, adsorption-selectivity separation, and synergetic adsorption-diffusion-selectivity separation. Meanwhile, intricate membrane design to realize synergistic separation and some emerging mechanisms are highlighted. Finally, the applications of microporous framework membranes for precise gas separation, liquid molecule separation, and ion sieving are summarized. The remaining challenges and future perspectives in this field are discussed. This timely review may provide genuine guidance on the manipulation of membrane structures and inspire creative designs of novel membranes, promoting the sustainable development and steadily increasing prosperity of this field.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mahato M, Tabassian R, Nguyen VH, Oh S, Nam S, Hwang WJ, Oh IK. CTF-based soft touch actuator for playing electronic piano. Nat Commun 2020; 11:5358. [PMID: 33097728 PMCID: PMC7585428 DOI: 10.1038/s41467-020-19180-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
In the field of bioinspired soft robotics, to accomplish sophisticated tasks in human fingers, electroactive artificial muscles are under development. However, most existing actuators show a lack of high bending displacement and irregular response characteristics under low input voltages. Here, based on metal free covalent triazine frameworks (CTFs), we report an electro-ionic soft actuator that shows high bending deformation under ultralow input voltages that can be implemented as a soft robotic touch finger on fragile displays. The as-synthesized CTFs, derived from a polymer of intrinsic microporosity (PIM-1), were combined with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) to make a flexible electrode for a high-performance electro-ionic soft actuator. The proposed soft touch finger showed high peak-to-peak displacement of 17.0 mm under ultralow square voltage of ±0.5 V, with 0.1 Hz frequency and 4 times reduced phase delay in harmonic response compared with that of a pure PEDOT-PSS-based actuator. The significant actuation performance is mainly due to the unique physical and chemical configurations of CTFs electrode with highly porous and electrically conjugated networks. On a fragile display, the developed soft robotic touch finger array was successfully used to perform soft touching, similar to that of a real human finger; device was used to accomplish a precise task, playing electronic piano.
Collapse
Affiliation(s)
- Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won-Jun Hwang
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
|
19
|
Wang J, Xiong S, Tao J, Liu C, Tang J, Pan C, Jian X, Yu G. An Azo-bridged porous organic polymers modified poly(phthalazinone ether sulfone ketone) membrane for efficient O2/N2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Han J, Bai L, Luo S, Yang B, Bai Y, Zeng S, Zhang X. Ionic liquid cobalt complex as O2 carrier in the PIM-1 membrane for O2/N2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Dong S, Wang Z, Sheng M, Qiao Z, Wang J. High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Alentiev AY, Starannikova LE, Nikiforov RY, Bezgin DA, Ponomarev II, Volkova YA, Blagodatskikh IV, Yampolskii YP. The Synthesis and Gas Transport Properties of PIM-1 Polybenzodioxane Modified with Benzanilide. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620040010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Mizrahi Rodriguez K, Wu AX, Qian Q, Han G, Lin S, Benedetti FM, Lee H, Chi WS, Doherty CM, Smith ZP. Facile and Time-Efficient Carboxylic Acid Functionalization of PIM-1: Effect on Molecular Packing and Gas Separation Performance. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X. Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M. Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunhee Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju 61186, Korea
| | - Cara M. Doherty
- The Commonwealth Scientific and Industrial Research Organization (CSIRO), Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Surface Modifications of Nanofillers for Carbon Dioxide Separation Nanocomposite Membrane. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CO2 separation is an important process for a wide spectrum of industries including petrochemical, refinery and coal-fired power plant industries. The membrane-based process is a promising operation for CO2 separation owing to its fundamental engineering and economic benefits over the conventionally used separation processes. Asymmetric polymer–inorganic nanocomposite membranes are endowed with interesting properties for gas separation processes. The presence of nanosized inorganic nanofiller has offered unprecedented opportunities to address the issues of conventionally used polymeric membranes. Surface modification of nanofillers has become an important strategy to address the shortcomings of nanocomposite membranes in terms of nanofiller agglomeration and poor dispersion and polymer–nanofiller incompatibility. In the context of CO2 gas separation, surface modification of nanofiller is also accomplished to render additional CO2 sorption capacity and facilitated transport properties. This article focuses on the current strategies employed for the surface modification of nanofillers used in the development of CO2 separation nanocomposite membranes. A review based on the recent progresses made in physical and chemical modifications of nanofiller using various techniques and modifying agents is presented. The effectiveness of each strategy and the correlation between the surface modified nanofiller and the CO2 separation performance of the resultant nanocomposite membranes are thoroughly discussed.
Collapse
|
25
|
Putintseva MN, Yushkin AA, Bondarenko GN, Kirk RA, Budd PM, Volkov AV. Crosslinking of Polybenzodioxane PIM-1 for Improving Its Stability in Aromatic Hydrocarbons. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090419060113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Ponomarev II, Razorenov DY, Blagodatskikh IV, Muranov AV, Starannikova LE, Alent’ev AY, Nikiforov RY, Yampol’skii YP. Polymer with Intrinsic Microporosity PIM-1: New Methods of Synthesis and Gas Transport Properties. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419050142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Thermopervaporation for regeneration of triethylene glycol (TEG):Experimental and model development. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Pan Y, Zhai X, Yin J, Zhang T, Ma L, Zhou Y, Zhang Y, Meng J. Hierarchical Porous and Zinc-Ion-Crosslinked PIM-1 Nanocomposite as a CO 2 Cycloaddition Catalyst with High Efficiency. CHEMSUSCHEM 2019; 12:2231-2239. [PMID: 30851144 DOI: 10.1002/cssc.201803066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/24/2019] [Indexed: 06/09/2023]
Abstract
CO2 cycloaddition to epoxides is an effective and economical utilization method to alleviate the current excessive CO2 emission situation. The development of catalysts with both high catalytic efficiency and high recyclability is necessary but challenging. In this context, a heterogeneous catalyst was synthesized based on a zinc-ion-crosslinked polymer with intrinsic microporosity (PIM-1). The high microporosity of PIM-1 promoted a high Zn2+ loading rate. Additionally, the relatively stable ionic bond formed between Zn2+ and the PIM-1 framework through electrostatic interaction ensured high loading stability. In the process of CO2 cycloaddition with propylene epoxide, an optimized conversion of 90 % with a turnover frequency as high as 9533 h-1 could be achieved within 0.5 h at 100 °C and 2 MPa. After 15 cycles, the catalytic efficiency did not demonstrate a significant decline, and the catalyst was able to recover most of its activity after Zn2+ reloading. This work thereby provides a strategically designed CO2 conversion catalyst based on an ionic crosslinked polymer with intrinsic microporosity.
Collapse
Affiliation(s)
- Ying Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Xiaofei Zhai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Jian Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Tianqi Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Liujia Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Yi Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| | - Jianqiang Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, No.399, Binshuixi Road, Xiqing District, Tianjin, 300387, P. R. China
| |
Collapse
|
29
|
Hossain I, Nam SY, Rizzuto C, Barbieri G, Tocci E, Kim TH. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Liao P, Cai G, Shi J, Zhang J. Post-modified porphyrin imine gels with improved chemical stability and efficient heterogeneous activity in CO2 transformation. NEW J CHEM 2019. [DOI: 10.1039/c9nj00570f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gel catalysts have been developed based on dynamic covalent chemistry and post-modification methods for improved chemical stability and catalytic activity.
Collapse
Affiliation(s)
- Peisen Liao
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Guangmei Cai
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Jianying Shi
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Jianyong Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| |
Collapse
|
31
|
Zhao H, Feng L, Ding X, Tan X, Zhang Y. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Kupgan G, Demidov AG, Colina CM. Plasticization behavior in polymers of intrinsic microporosity (PIM-1): A simulation study from combined Monte Carlo and molecular dynamics. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Zhao S, Liao J, Li D, Wang X, Li N. Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's Base polymer for gas separation membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Martin-Gil V, Ahmad M, Castro-Muñoz R, Fila V. Economic Framework of Membrane Technologies for Natural Gas Applications. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1532911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- V. Martin-Gil
- Department of Inorganic Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - M.Z. Ahmad
- Department of Inorganic Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - R. Castro-Muñoz
- Department of Inorganic Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - V. Fila
- Department of Inorganic Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| |
Collapse
|
35
|
|
36
|
Sazali N, Salleh WNW, Ismail AF, Wong KC, Iwamoto Y. Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci 2018. [DOI: 10.1002/app.46901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- N. Sazali
- Advanced Membrane Technology Research Centre (AMTEC); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
- Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
| | - W. N. W. Salleh
- Advanced Membrane Technology Research Centre (AMTEC); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
- Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
| | - A. F. Ismail
- Advanced Membrane Technology Research Centre (AMTEC); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
- Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
| | - K. C. Wong
- Advanced Membrane Technology Research Centre (AMTEC); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
- Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 Skudai Johor Darul Takzim Malaysia
| | - Y. Iwamoto
- Department of Frontier Materials, Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku, 466-555 Nagoya Japan
| |
Collapse
|
37
|
Ahmad MZ, Navarro M, Lhotka M, Zornoza B, Téllez C, de Vos WM, Benes NE, Konnertz NM, Visser T, Semino R, Maurin G, Fila V, Coronas J. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.040] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Kupgan G, Abbott LJ, Hart KE, Colina CM. Modeling Amorphous Microporous Polymers for CO2 Capture and Separations. Chem Rev 2018; 118:5488-5538. [DOI: 10.1021/acs.chemrev.7b00691] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Grit Kupgan
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
- Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren J. Abbott
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyle E. Hart
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Coray M. Colina
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
- Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
Effective Conversion of Amide to Carboxylic Acid on Polymers of Intrinsic Microporosity (PIM-1) with Nitrous Acid. MEMBRANES 2018; 8:membranes8020020. [PMID: 29670058 PMCID: PMC6027257 DOI: 10.3390/membranes8020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/17/2022]
Abstract
Carboxylate-functionalised polymers of intrinsic microporosity (C-PIMs) are highly desirable materials for membrane separation applications. The recently reported method to afford C-PIMs was via an extensive base hydrolysis process requiring 360 h. Herein, a novel and effective method to convert PIM-CONH₂ to C-PIM using nitrous acid was studied. The chemical structure of C-PIM was characterised by ¹H NMR, 13C NMR, FTIR, elemental analysis, UV-Vis, TGA and TGA-MS. Complete conversion from amide to carboxylic acid groups was confirmed. Decarboxylation of C-PIM was also successfully studied by TGA-MS for the first time, with a loss of m/z 44 amu (CO₂) observed at the first degradation stage. TGA also revealed decreased thermal stability of C-PIM relative to PIM-CONH₂ under both N₂ and air atmosphere. Gel permeation chromatography (GPC) analysis showed continuous molecular weight degradation of C-PIM with extended reaction time. Aromatic nitration was also observed as a side reaction in some cases.
Collapse
|
40
|
Rukmani SJ, Liyana-Arachchi TP, Hart KE, Colina CM. Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3949-3960. [PMID: 29553745 DOI: 10.1021/acs.langmuir.7b04320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ionic-functionalized microporous materials are attractive for energy-efficient gas adsorption and separation processes and have shown promising results in gas mixtures at pressure ranges and compositions that are relevant for industrial applications. In this work, we studied the influence of different counterions (Li+, Na+, K+, Rb+, and Mg2+) on the porosity, carbon dioxide (CO2) gas adsorption, and selectivity in ionic-functionalized PIM-1 (IonomIMs), a polymer belonging to the class of linear and amorphous microporous polymers known as polymers of intrinsic microporosity (PIMs). It was found that an increase in the concentration of ionic groups led to a decrease in the free volume, resulting in a less porous polymer framework, and Mg2+-functionalized IonomIMs exhibited a relatively larger porosity compared to other IonomIMs. The CO2 adsorption capacity was affected by the different counterions for IonomIM-1, and a higher loading capacity for pure CO2 was observed for Mg2+. Furthermore, the IonomIMs showed an enhanced CO2 selectivity in CO2/CH4 and CO2/N2 gas mixtures at conditions used in pressure swing adsorption and vacuum swing adsorption applications. It was also observed that the concentration of ionic groups plays a vital role in changing the CO2 gas adsorption and selectivity.
Collapse
Affiliation(s)
| | | | - Kyle E Hart
- Department of Materials Science and Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | | |
Collapse
|
41
|
Partial pore blockage and polymer chain rigidification phenomena in PEO/ZIF-8 mixed matrix membranes synthesized by in situ polymerization. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Ma C, Urban JJ. Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review. ACTA ACUST UNITED AC 2018. [DOI: 10.11605/j.pnrs.201802002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Zou X, Zhu G. Microporous Organic Materials for Membrane-Based Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1700750. [PMID: 29064126 DOI: 10.1002/adma.201700750] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Indexed: 05/28/2023]
Abstract
Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H2 , CO2 , O2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions.
Collapse
Affiliation(s)
- Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
44
|
Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
|
46
|
Jeon JW, Kim DG, Sohn EH, Yoo Y, Kim YS, Kim BG, Lee JC. Highly Carboxylate-Functionalized Polymers of Intrinsic Microporosity for CO2-Selective Polymer Membranes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01332] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jun Woo Jeon
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
- School
of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical Convergence
Materials, University of Science and Technology, 217 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Eun-ho Sohn
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical Convergence
Materials, University of Science and Technology, 217 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Youngjae Yoo
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical Convergence
Materials, University of Science and Technology, 217 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical Convergence
Materials, University of Science and Technology, 217 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Byoung Gak Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical Convergence
Materials, University of Science and Technology, 217 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Jong-Chan Lee
- School
of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
47
|
Golzar K, Modarress H, Amjad-Iranagh S. Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO 2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. J Mol Model 2017; 23:266. [PMID: 28823034 DOI: 10.1007/s00894-017-3436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/01/2017] [Indexed: 11/27/2022]
Abstract
Molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations were conducted to investigate the transport properties of carbon dioxide, methane, nitrogen, and oxygen through pure and mixed matrix membranes (MMMs) based on polymers of intrinsic microporosity (PIM-1). For this purpose, first, 0.5 to 3 wt% of pristine single-walled carbon nanotube (p-SWCNT) and multi-walled carbon nanotube (p-MWCNT) were embedded into the pure PIM-1, and then for better dispersion of CNT particles into the polymer matrix and to improve the performance of the resulting MMMs, polyethylene glycol (PEG) functionalized SWCNT and MWCNT (f-SWCNT and f-MWCNT, respectively) were loaded. The characterization of the obtained MMMs was carried out by using density, glass transition temperature, X-ray pattern, and fractional free volume calculations. Comparing the obtained results with the available reported experimental data, indicate the authenticity of the applied simulation approach. The simulation results exhibit that the pristine and PEG-functionalized CNT particles improve the transport properties such as diffusivity, solubility, and permeability of the PIM-1 membranes, without sacrificing their selectivity. Also, the MMMs incorporated with 2 wt% of the functionalized CNT particles indicate better performance for the CO2 separation from other gases. According to the calculated results, the highest permeability and diffusivity for CO2 are observed in the [PIM-1/f-SWCNT] MMM among the other membranes which represent that the loading of the f-SWCNTs can enhance the CO2 separation performance of PIM-1 more than other CNTs studied in this work.
Collapse
Affiliation(s)
- Karim Golzar
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hamid Modarress
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Sepideh Amjad-Iranagh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
48
|
Liao KS, Japip S, Lai JY, Chung TS. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Santoso B, Yanaranop P, Kang H, Leung IKH, Jin J. A Critical Update on the Synthesis of Carboxylated Polymers of Intrinsic Microporosity (C-PIMs). Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00344] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Bagus Santoso
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Paam Yanaranop
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Hong Kang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Jianyong Jin
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
50
|
Wang J, Zhu J, Zhang Y, Liu J, Van der Bruggen B. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. NANOSCALE 2017; 9:2942-2957. [PMID: 28197584 DOI: 10.1039/c6nr08417f] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China. and Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Junyong Zhu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Jindun Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|