1
|
Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Advances in the synthesis of heterocycles bearing an endocyclic urea moiety. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Zeng G, Wang Y, Gong D, Zhang Y, Wu P, Sun Y. Dual-Role Membrane as NH 3 Permselective Reactor and Azeotrope Separator in Urea Alcoholysis. ACS CENTRAL SCIENCE 2019; 5:1834-1843. [PMID: 31807685 PMCID: PMC6891847 DOI: 10.1021/acscentsci.9b00812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Urea methanolysis is a green alternative to synthesize dimethyl carbonate (UM-to-DMC). However, it is strongly challenged by the generated NH3 induced thermodynamic equilibrium limitation and the azeotropic products' separation. Herein, these predicaments are well-relieved by introducing membranes in both reaction and product separation. An NH3 permselective membrane reactor (MR) based on modified SAPO-34 membrane is successfully realized for UM-to-DMC. The permselectivity and acidity of the SAPO-34 membrane are significantly adjusted to cater the strict molecular sieving of NH3/methanol and chemical inertness upon the reaction. The MR exhibits excellent reactant conversion and DMC selectivity, resulting in >139% higher DMC yield than that of the nonmembrane reactor, due to in situ removal of NH3 by the membrane. The MR also demonstrates reliable chemical, thermal, and mechanical stability during >2000 h. Moreover, the regular SAPO-34 membrane with controlled thickness presents remarkable separation performance for the methanol-DMC azeotrope, in which the methanol-DMC separation factors and the methanol permeance are 1-2 orders of magnitude higher than those of the polymeric membranes. This study suggests the great potential that integration of such membranes offers for process intensification, energy savings, and efficiency improvement in a series of urea alcoholysis and even other NH3 releasing reactions.
Collapse
Affiliation(s)
- Gaofeng Zeng
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yue Wang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dian Gong
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanfeng Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Ping Wu
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- School
of Physical Science and Technology, ShanghaiTech
University, 393 Mid Huaxia
Road, Shanghai 201210, China
| |
Collapse
|
3
|
Yuan DJ, Hengne AM, Saih Y, Huang KW. Nonoxidative Dehydrogenation of Methanol to Methyl Formate through Highly Stable and Reusable CuMgO-Based Catalysts. ACS OMEGA 2019; 4:1854-1860. [PMID: 31459440 PMCID: PMC6648458 DOI: 10.1021/acsomega.8b03069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/14/2019] [Indexed: 06/10/2023]
Abstract
Nonoxidative dehydrogenation of methanol to methyl formate over a CuMgO-based catalyst was investigated. Although the active site is metallic copper (Cu0), the best reaction conditions were obtained by tuning the ratio of Cu/Mg and doping the catalyst with 1 wt % of Pd to achieve a very specific activity for methyl formate synthesis. On the basis of the CO2 temperature-programmed desorption study, the basic strength of the catalyst plays a role in the efficient conversion of methanol to methyl formate via dehydrogenation. These CuMgO-based catalysts show excellent thermal stability during the reaction and the regeneration processes. Approx. 80% methanol conversion with constant selectivity to methyl formate was achieved even after 4 rounds of usage for a total reaction time exceeding 200 h, indicative of their potential for practical applications.
Collapse
|
4
|
Li H, Gonçalves TP, Lupp D, Huang KW. PN3(P)-Pincer Complexes: Cooperative Catalysis and Beyond. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04495] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaifeng Li
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Théo P. Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Daniel Lupp
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Izák P, Bobbink FD, Hulla M, Klepic M, Friess K, Hovorka Š, Dyson PJ. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies. Chempluschem 2017; 83:7-18. [PMID: 31957320 DOI: 10.1002/cplu.201700293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/24/2017] [Indexed: 12/17/2022]
Abstract
Membrane technologies enable the facile separation of complex mixtures of gases, vapours, liquids and/or solids under mild conditions. Simultaneous chemical transformations can also be achieved in membranes by using catalytically active membrane materials or embedded catalysts, in so-called membrane reactors. A particular class of membranes containing or composed of ionic liquids (ILs) or polymeric ionic liquids (pILs) have recently emerged. These membranes often exhibit superior transport and separation properties to those of classical polymeric membranes. ILs and pILs have also been extensively studied as separation solvents, catalysts and co-catalysts in similar applications for which membranes are employed. In this review, after introducing ILs and their applications in catalysis, catalytic membranes and recent advances in membrane separation processes based on ILs are described. Finally, the nascent concept of catalytic IL membranes is highlighted, in which catalytically active ILs/pILs are incorporated into membrane technologies to act as a catalytic separation layer.
Collapse
Affiliation(s)
- Pavel Izák
- Institute of Chemical Process Fundamentals of the Czech Academy of Science, v.v.i. Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Felix D Bobbink
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| | - Martin Hulla
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| | - Martina Klepic
- University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Karel Friess
- University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Štěpán Hovorka
- University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| |
Collapse
|