1
|
Kazemi D, Yaftian MR. PVDF-HFP-based polymer inclusion membrane functionalized with D2EHPA for the selective extraction of bismuth(III) from sulfate media. Sci Rep 2024; 14:11622. [PMID: 38773177 PMCID: PMC11109169 DOI: 10.1038/s41598-024-62401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
This study is the first application of a PVDF-HFP-based polymer inclusion membrane incorporating the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) as the base polymer and extractant for the extraction of bismuth(III), respectively. It is demonstrated that the PIM comprised of 60 wt% PVDF-HFP and 40 wt% D2EHPA is the most effective in the extraction of bismuth(III) from feed solution containing 20 mg L-1 bismuth(III) and 0.2 mol L-1 sulfate adjusted to pH 1.4. The extracted bismuth(III) ions are back-extracted quantitatively to the receiving solution containing 1 mol L-1 sulfuric acid. The stoichiometry experiments reveal that the Bi: D2EHPA ratio in the bismuth(III) extracted complex is 1:6, and D2EHPA is dimer. Moreover, it is shown that the studied PIM has high selectivity in the extraction of bismuth(III) over other interfering ions such as Mo(VI), Cr(III), Al(III), Fe(III), Ni(II), Zn(II), Cd(II), Co(II), Cu(II), and Mn(II). The interference of Fe(III) is also eliminated by masking with fluoride, leading finally to a nearly pure extraction of bismuth(III).
Collapse
Affiliation(s)
- Davood Kazemi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Mohammad Reza Yaftian
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| |
Collapse
|
2
|
Wang Y, Wang P, Xie H, Tan M, Wang L, Liu Y, Zhang Y. Mechanistic investigation of intensified separation of molybdenum(VI) and vanadium(V) using polymer inclusion membrane electrodialysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131671. [PMID: 37236110 DOI: 10.1016/j.jhazmat.2023.131671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
The main challenge in separating molybdenum(VI) and vanadium(V) which have similar properties results in great difficulties in the green recycling of hazardous spent catalysts. Here, selective facilitating transport and stripping are integrated into the polymer inclusion membrane electrodialysis process (PIMED) to separate Mo(VI) and V(V) to overcome the complicated co-extraction and stepwise-stripping in conventional solvent extraction. The influences of various parameters, the selective transport mechanism, and respective activation parameters were systematically investigated. Results revealed that the affinity of the Aliquat 36 as the carrier and PVDF-HFP as the base polymer of PIM towards Mo(VI) is stronger than that of V(V), while the strong interaction between Mo(VI) and carrier caused low migration through the membrane. By the combination of adjusting and controlling the electric density and strip acidity, the interaction was destroyed and the transport was facilitated. After optimization, stripping efficiencies of Mo(VI) and V (V) increased from 44.4% to 93.1% and reduced from 31.9% to 1.8%, respectively, while their separation coefficient increased 16.3 times to 333.4. The activation energy, enthalpy and entropy for the transport of Mo(VI) were determined to be 4.846 kJ mol-1, 6.745 kJ mol-1 and - 310.838 J mol-1 K-1, respectively. The present work demonstrates that the separation of similar metal ions could be improved by fine tuning the affinity and interaction between metal ions and the PIM, thus providing new insights into the recycling of similar metal ions from secondary resources.
Collapse
Affiliation(s)
- Yuzhen Wang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Pengfei Wang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Huihui Xie
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Ming Tan
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Lingyun Wang
- Key Laboratory of Clean Chemical Processing Engineering of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yang Liu
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Yang Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
3
|
Reactive extraction evaluation for vanadium (V) removal in the MRDC column using axial dispersion and central composition approach. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Qin Z, Wang Y, Sun L, Gu Y, Zhao Y, Xia L, Liu Y, Van der Bruggen B, Zhang Y. Vanadium recovery by electrodialysis using polymer inclusion membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129315. [PMID: 35739806 DOI: 10.1016/j.jhazmat.2022.129315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Industrial applications and environmental awareness recently prompted vanadium recovery spell from secondary resources. In this work, a polymer inclusion membrane containing trioctylmethylammonium chloride as carrier was successfully employed in electrodialysis for vanadium recovery from acidic sulfate solutions. The permeability coefficient of V(V) increased from 0.29 µm·s-1 (without electric field) to 4.10 µm·s-1 (with the 20 mA·cm-2 current density). The transport performance of VO2SO4-, which was the predominant species containing V(V) in the acidic region (pH <3), was influenced by the aqueous pH value and sulfate concentration. Under an electric field, a low concentrated H2SO4 solution (0.2 M) effectively stripped V(V) from the membranes, avoiding the requirement of a highly concentrated H2SO4 without electric field. Under the optimum conditions, the permeability coefficient and flux reached 6.80 µm·s-1 and 13.34 µmol·m-2·s-1, respectively. High selectivity was observed for the separation of V(V) and Mo(VI) from mixed solutions of Co (II), Ni (II), Mn (II), and Al (III). Additionally, the separation between Mo(VI) and V(V) was further improved by adjusting the acidity of the stripping solution. The V(V) selectivity for the resulting membrane was higher than that of commercial anion exchange membranes.
Collapse
Affiliation(s)
- Zihan Qin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yuzhen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Liang Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yuanxiang Gu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Lei Xia
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| | - Yang Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
5
|
Zeng L, Yi Q, Peng X, Huang Z, Van der Bruggen B, Zhang Y, Kuang Y, Ma Y, Tang K. Modelling and optimization of a new complexing retardant-enhanced polymer inclusion membrane system for highly selective separation of Zn2+ and Cu2+. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Bahrami S, Dolatyari L, Shayani‐Jam H, Yaftian MR. Membrane extraction of V(V) by an oleic acid plasticized poly(vinyl chloride)/Aliquat® 336 polymer inclusion membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Salar Bahrami
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Leila Dolatyari
- Department of Chemistry Zanjan Branch, Islamic Azad University Zanjan Iran
| | - Hassan Shayani‐Jam
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | | |
Collapse
|
8
|
Kazemi D, Yaftian MR. Selective transport-recovery of bismuth(III) by a polymer inclusion membrane containing polyvinyl chloride base polymer and bis(2-ethylhexyl)phosphoric acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
On the Potential of a Poly(vinylidenefluoride-co-hexafluoropropylene) Polymer Inclusion Membrane Containing Aliquat® 336 and Dibutyl Phthalate for V(V) Extraction from Sulfate Solutions. MEMBRANES 2022; 12:membranes12010090. [PMID: 35054616 PMCID: PMC8777928 DOI: 10.3390/membranes12010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022]
Abstract
A polymer inclusion membrane (PIM) composed of 50 wt% base polymer poly(vinylidenefluoride-co-hexafluoropropylene), 40 wt% extractant Aliquat® 336, and 10 wt% dibutyl phthalate as plasticizer/modifier provided the efficient extraction of vanadium(V) (initial concentration 50 mg L−1) from 0.1 M sulfate solutions (pH 2.5). The average mass and thickness of the PIMs (diameter 3.5 cm) were 0.057 g and 46 μm, respectively. It was suggested that V(V) was extracted as VO2SO4− via an anion exchange mechanism. The maximum PIM capacity was estimated to be ~56 mg of V(V)/g for the PIM. Quantitative back-extraction was achieved with a 50 mL solution of 6 M H2SO4/1 v/v% of H2O2. It was assumed that the back-extraction process involved the oxidation of VO2+ to VO(O2)+ by H2O2. The newly developed PIM, with the optimized composition mentioned above, exhibited an excellent selectivity for V(V) in the presence of metallic species present in digests of spent alumina hydrodesulfurization catalysts. Co-extraction of Mo(VI) with V(V) was eliminated by its selective extraction at pH 1.1. Characterization of the optimized PIM was performed by contact angle measurements, atomic-force microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis/derivatives thermogravimetric analysis and stress–strain measurements. Replacement of dibutyl phthalate with 2-nitrophenyloctyl ether improved the stability of the studied PIMs.
Collapse
|
10
|
Keskin B, Zeytuncu-Gökoğlu B, Koyuncu I. Polymer inclusion membrane applications for transport of metal ions: A critical review. CHEMOSPHERE 2021; 279:130604. [PMID: 33895673 DOI: 10.1016/j.chemosphere.2021.130604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/26/2023]
Abstract
The co-existence of heavy metals in industrial effluents is a prevalent problem. Heavy metals are not biodegradable and can remain in the environment when left untreated. Therefore, metals must be removed from wastewater to protect people's health and the environment. Also, these pollutants usually have dissimilar compositions and properties. Generally, metal treatment is performed using traditional methods, but new processes have been developed due to the disadvantages of traditional methods. Especially in the last 20 years, studies on polymer inclusion membranes have been carried out and the transport performance of metal ions has been investigated. It is a more convenient process than both ion exchange and liquid-liquid extraction methods due to the potential and performance of polymer inclusion membranes. When the studies in the literature are examined, it is seen that the performance of polymer inclusion membranes is higher than expected and also when the production conditions are examined, polymer inclusion membrane is more advantageous than other processes. This review is a summary of the studies on the removal and transport of metal by using polymer inclusion membranes in the literature over the last 20 years.
Collapse
Affiliation(s)
- Başak Keskin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bihter Zeytuncu-Gökoğlu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
11
|
Wang B, Lang Q, Tan M, Jiang H, Wang L, Liu Y, Zhang Y. Crosslinking improved ion transport in polymer inclusion membrane‐electrodialysis process and the underlying mechanism. AIChE J 2021. [DOI: 10.1002/aic.17397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Baoying Wang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Qiaolin Lang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| | - Ming Tan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| | - Heqing Jiang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Lingyun Wang
- Key Laboratory of Clean Chemical Processing Engineering of Shandong Province College of Chemical Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yang Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
12
|
Ghaderi N, Dolatyari L, Kazemi D, Sharafi HR, Shayani‐Jam H, Yaftian MR. Application of a polymer inclusion membrane made of cellulose triacetate base polymer and trioctylamine for the selective extraction of bismuth(
III
) from chloride solutions. J Appl Polym Sci 2021. [DOI: 10.1002/app.51480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Narges Ghaderi
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Leila Dolatyari
- Department of Chemistry, Zanjan Branch Islamic Azad University Zanjan Iran
| | - Davood Kazemi
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Hamid Reza Sharafi
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Hassan Shayani‐Jam
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | | |
Collapse
|
13
|
Ghorbanpour P, Jahanshahi M. Removal of zinc by emulsion liquid membrane using lecithin as biosurfactant. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1929287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Payam Ghorbanpour
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohsen Jahanshahi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
14
|
Zeng Z, Su X, Gao Y, Yu G, Ni S, Su J, Sun X. Separation of lutetium using a novel bifunctional ionic liquid based on phosphonate functionalization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Rzelewska-Piekut M, Regel-Rosocka M. Liquid membranes for separation of metal ions from wastewaters. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The paper reviews application of various liquid membranes (LM), particularly of emulsion and supported liquid membranes, for metal separation from model and industrial wastewaters. A variety of carriers and separation systems is shown. Not only model solutions on a laboratory scale are presented but also some examples of real wastewater separation with LM are reported.
Collapse
Affiliation(s)
- Martyna Rzelewska-Piekut
- Institute of Chemical Technology and Engineering , Poznan University of Technology , ul. Berdychowo 4 , 60-965 , Poznań , Poland
| | - Magdalena Regel-Rosocka
- Institute of Chemical Technology and Engineering , Poznan University of Technology , ul. Berdychowo 4 , 60-965 , Poznań , Poland
| |
Collapse
|
16
|
Wang D, Liu F, Zhang X, Wu M, Wang F, Liu J, Wang J, Liu Q, Zeng H. A Janus facilitated transport membrane with asymmetric surface wettability and dense/porous structure: Enabling high stability and separation efficiency. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Witt K, Urbaniak W, Kaczorowska MA, Bożejewicz D. Simultaneous Recovery of Precious and Heavy Metal Ions from Waste Electrical and Electronic Equipment (WEEE) Using Polymer Films Containing Cyphos IL 101. Polymers (Basel) 2021; 13:1454. [PMID: 33946200 PMCID: PMC8124808 DOI: 10.3390/polym13091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
In this article, the application of a polymer film containing the ionic liquid Cyphos IL 101 for the simultaneous recovery of precious and heavy metal ions ((Ni(II), Zn(II), Co(II), Cu(II), Sn(II), Pb(II), Ag(I), Pd(II), and Au(III)) from waste electrical and electronic equipment (WEEE) is described. The experiments were performed for solutions containing metal ions released from computer e-waste due to leaching carried out with concentrated nitric(V) acid and aqua regia. It was found that the applied polymer film allows for the efficient recovery of precious metals (98.9% of gold, 79.3% of silver, and 63.6% of palladium). The recovery of non-ferrous metals (Co, Ni, Cu, Zn, Sn, and Pb) was less efficient (25-40%). Moreover, the results of the performed sorption/desorption processes show that the polymer film with Cyphos IL 101 can be successfully used after regeneration to recover metals ions several times.
Collapse
Affiliation(s)
- Katarzyna Witt
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| | - Włodzimierz Urbaniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 8 Uniwersytetu Poznańskiego Street, 61712 Poznan, Poland
| | - Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| | - Daria Bożejewicz
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| |
Collapse
|
18
|
Sedkaoui Y, Abdellaoui N, Arous O, Lounici H, Nasrallah N, Szymczyk A. Elaboration and characterization of multilayer polymeric membranes: effect of the chemical nature of polymers. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The transport phenomena across polymeric membrane may be enhanced by applying various strengths inside or outside the system. Recently, polymer inclusion membrane (PIM) has been considered one of the most popular methods that acts as a sink for the contaminant and immobilizes it. In the literature, there is no report about how to achieve the synthesis of multi-layer PIMs. In this paper, an improvement of a novel category of membrane without carrier for performing ion separation is reported. Different membranes were elaborated from binary mixtures of polymers, cellulose triacetate (CTA), polymethyl methacrylate (PMMA) and polyvinyl chloride (PVC) using 2-nitrophenyl octyle-ether (NPOE) as plasticizer and carrier in the same time, in order to increase specific interactions between the different polymers. The membranes (Polymer 1– NPOE – Polymer 2) were synthesized by phase inversion method modified by changing the procedure of a plasticizer/carrier addition and characterized by FTIR, TGA, SEM, zeta potential and contact angle. The CTA-based membranes exhibited well-defined pores partially filled with the second polymer and NPOE. Overall, our results showed that the addition of NPOE resulted in homogeneous membranes with modified physical properties, such as thickness, and hydrophobicity. A study of transport of Pb(II) using the synthesized membranes was studied. Dialysis experiments of lead ions across a polymeric membrane have shown that (CTA + NPOE + PMMA) and (PMMA + NPOE + PVC) membranes proved a good performance in one stage by fixing 12.15 and 25.31% of lead, respectively, without any additionally added carrier and acids. These results confirm the affinity between a basic polymer (poly-methyl methacrylate) and the metallic ion (Pb2+).
Collapse
Affiliation(s)
- Youcef Sedkaoui
- Laboratoire Matériaux et Développement Durable (LMDD) , Université de Bouira , Rue DRISSI Yahia , 10000 Bouira , Algeria
- National Polytechnic School of Algiers (ENP) , 10 Hassen Badi , PO Box 182 , El Harrach , 16200 Algiers , Algeria
| | - Naima Abdellaoui
- Faculté de Chimie, Laboratoire des matériaux polymères , USTHB , BP 32 El Alia , 16111 Alger , Algeria
| | - Omar Arous
- Faculty of Chemistry, Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry , USTHB , PO Box 32 El Alia , 16111 Algiers , Algeria
| | - Hakim Lounici
- Laboratoire Matériaux et Développement Durable (LMDD) , Université de Bouira , Rue DRISSI Yahia , 10000 Bouira , Algeria
- National Polytechnic School of Algiers (ENP) , 10 Hassen Badi , PO Box 182 , El Harrach , 16200 Algiers , Algeria
| | - Noreddine Nasrallah
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés , USTHB , BP 32 El Alia , 16111 Alger , Algeria
| | - Anthony Szymczyk
- Institut des Sciences Chimiques de Rennes (ISCR) – UMR 6226, Univ. Rennes, CNRS , F-35000 Rennes , France
| |
Collapse
|
19
|
Bahrami S, Yaftian MR, Najvak P, Dolatyari L, Shayani-Jam H, Kolev SD. PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and Aliquat® 336 for the removal of Cr(VI) from sulfate solutions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117251] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Sellami F, Kebiche-Senhadji O, Marais S, Colasse L, Fatyeyeva K. Enhanced removal of Cr(VI) by polymer inclusion membrane based on poly(vinylidene fluoride) and Aliquat 336. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
A clean and efficient method for separation of vanadium and molybdenum by aqueous two-phase systems. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Wang Y, Chen L, Yan Y, Chen J, Dai J, Dai X. Separation of adjacent heavy rare earth Lutetium (III) and Ytterbium (III) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Wang D, Liu J, Chen J, Liu Q, Zeng H. New insights into the interfacial behavior and swelling of polymer inclusion membrane (PIM) during Zn (II) extraction process. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
A comprehensive investigation on the components in ionic liquid-based polymer inclusion membrane for Cr(VI) transport during electrodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Cueva Sola AB, Parhi PK, Lee JY, Kang HN, Jyothi RK. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using Aliquat 336. RSC Adv 2020; 10:19736-19746. [PMID: 35520398 PMCID: PMC9054128 DOI: 10.1039/d0ra02229b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
This research paper deals with an environmentally friendly approach for the treatment of spent selective catalytic reduction (SCR) catalyst. To recover vanadium (V) and tungsten (W) from spent SCR catalyst, leach liquors from hydrometallurgical processing were utilized to develop a proper methodology for extraction and possible separation of vanadium and tungsten from each other. This study investigated the solvent extraction (also called liquid-liquid extraction) of vanadium and tungsten utilizing the alkaline roasted leached solution containing approximately ∼7 g L-1 of tungsten and ∼0.7 g L-1 of vanadium. The commercial extractant, N-methyl-N,N,N-tri-octyl-ammonium chloride [R3NCH3]+Cl- (commercial name Aliquat 336), was dissolved in Exxsol™ D80 (diluent) system and adopted in this research. Solvent extraction studies were performed to determine the following experimental parameters: equilibrium pH, extractant concentration, diluent influence, chloride ion concentration, temperature, and stripping reagent concentration, which were systematically scanned to ascertain the optimum conditions for quantitative extraction of both title metals. An anion exchange mechanism was proposed using the quaternary ammonium chloride solvent reagent after slope analysis. Excess supplement of chloride proved to have adverse effects, further supporting the extraction mechanism. Thermodynamics results show positive values for enthalpy (ΔH) for vanadium and tungsten, favoring the endothermic nature of the extraction reaction towards the uptake of either metal. McCabe-Thiele plots for extraction were constructed, suggesting 2 and 3 stages for vanadium and tungsten extraction, respectively, at the aqueous (A) to organic (O) phase ratio of 7 : 1, ensuring more than 99.9% and 7-fold enrichment of both title metals. The stripping trend follows the order: (NaOH + NaCl) > (NaOH + NaNO3) > NaOH > NaNO3 > NaCl. Stripping isotherm followed by stripping counter-current (CCS) study was carried out for quantitative stripping of the metals.
Collapse
Affiliation(s)
- Ana Belen Cueva Sola
- Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- Department of Resource Recycling, Korea University of Science and Technology (UST) Daejeon 34113 Korea
| | - Pankaj Kumar Parhi
- Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- School of Chemical Technology, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be a University Bhubaneswar 751 024 Odisha India
| | - Jin-Young Lee
- Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- Department of Resource Recycling, Korea University of Science and Technology (UST) Daejeon 34113 Korea
| | - Hee Nam Kang
- Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
| | - Rajesh Kumar Jyothi
- Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM) Daejeon 34132 Korea +82-42-868-3421 +82-42-868-3313
- Department of Resource Recycling, Korea University of Science and Technology (UST) Daejeon 34113 Korea
| |
Collapse
|
26
|
Separation of vanadium and molybdenum from aqueous solution using PEG2000 + sodium sulfate + water aqueous two-phase system. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1507-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Simultaneous extraction and recovery of gold(I) from alkaline solutions using an environmentally benign polymer inclusion membrane with ionic liquid as the carrier. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Selective Separation of Acetic and Hexanoic Acids across Polymer Inclusion Membrane with Ionic Liquids as Carrier. Int J Mol Sci 2019; 20:ijms20163915. [PMID: 31408956 PMCID: PMC6720499 DOI: 10.3390/ijms20163915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/27/2022] Open
Abstract
This paper first reports on the selective separation of volatile fatty acids (VFAs) (acetic and hexanoic acids) using polymer inclusion membranes (PIMs) containing quaternary ammonium and phosphonium ionic liquids (ILs) as the carrier. The affecting parameters such as IL content, VFA concentration, and the initial pH of the feed solution as well as the type and concentration of the stripping solution were investigated. PIMs performed a much higher selective separation performance toward hexanoic acid. The optimal PIM composed of 60 wt% quaternary ammonium IL with the permeability coefficients for acetic and hexanoic acid of 0.72 and 4.38 µm s−1, respectively, was determined. The purity of hexanoic acid obtained in the stripping solution increased with an increase in the VFA concentration of the feed solution and decreasing HCl concentration of the stripping solution. The use of Na2CO3 as the stripping solution and the involvement of the electrodialysis process could dramatically enhance the transport efficiency of both VFAs, but the separation efficiency decreased sharply. Furthermore, a coordinating mechanism containing hydrogen bonding and ion exchange for VFA transport was demonstrated. The highest purity of hexanoic acid (89.3%) in the stripping solution demonstrated that this PIM technology has good prospects for the separation and recovery of VFAs from aqueous solutions.
Collapse
|
29
|
Chromium(VI) Removal by Polyvinyl Chloride (PVC)/Aliquat-336 Polymeric Inclusion Membranes in a Multiframe Flat Sheet Membrane Module. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9152994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new multiframe flat sheet membrane contactor module containing several flat membranes was designed and implemented. Each frame contains a chamber (central hole) in which the feed and the receiving phases are put in contact with polyvinyl chloride (PVC)/Aliquat-336 polymeric flat sheet membranes for Cr(VI) removal from aqueous solutions (feed phase). To evaluate the efficiency of the system, the experimental design methodology was used to analyze the effect of temperature (T, °C), PVC/Aliquat-336 ratio, and Cr (VI) concentration in the feed phase and the concentration of sodium chloride (NaOH-NaCl) in the receiving phase. Two representative mathematical models of the two responses (extraction and back-extraction) were respectively obtained. A good correlation between the experimental results and those predicted (RS2 = 97.77 and RR2 = 97.87) was achieved, allowing the optimization of the different factors selected for each response, separately. The proposed system showed a good separation performance, leading to Cr(VI) extractions up to 93% when working at the optimized operating conditions.
Collapse
|
30
|
Wang L, Chao L, Qu W, Xu S, Zhang L, Peng J, Ye X. Ultrasound-assisted oil removal of γ-Al 2O 3-based spent hydrodesulfurization catalyst and microwave roasting recovery of metal Mo. ULTRASONICS SONOCHEMISTRY 2018; 49:24-32. [PMID: 30122468 DOI: 10.1016/j.ultsonch.2018.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Currently, roasting-leaching is the main treatment process of spent hydrodesulfurization (HDS) catalyst, but it will produce impurities, such as nickel molybdate and cobalt molybdate (NiMoO4 or CoMoO4), which is adverse to recover valuable metals. In this paper, a combined ultrasonic-microwave method was developed to remove oil and recover molybdenum (Mo) from the spent HDS catalyst. Firstly, ethanol was used to extract the surface oil of the spent MoNiCo/Al2O3 catalyst with ultrasonic assistance. Effects of temperature, ultrasonic time, liquid-solid ratio and ultrasonic power on the oil removal rate were investigated systematically and the process conditions were optimized using response surface methodology (RSM). The results showed that the oil removal rate was over 99% under the optimum conditions of temperature 55 °C, ultrasonic time 2 h, liquid to solid ratio 5:1, and ultrasonic power 600 W. After oil removal, the sample was roasted in microwave field at 500 °C for 15 min. The generation of toxic gas could be effectively avoided and no hardest-to-recycle impurity CoMoO4 was found. At last, the roasted sample was subjected to ultrasonic leaching with sodium carbonate (Na2CO3) solution for recovering Mo. Extraction of Mo of the deoiled sample after microwave roasting reached 94.3%, which is about 7% higher than that of oily sample. Moreover, microwave roasting method resulted in a much higher Mo extraction than traditional method for both the oily and deoiled spent catalyst. It was concluded that the ultrasonic-microwave assisted method could remarkably improve the recovery of Mo and greatly shorten the processing time.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Liu Chao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Wenwen Qu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Shengming Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; Beijing Key Lab of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Jinhui Peng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Xiaolei Ye
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
31
|
Yaftian MR, Almeida MIG, Cattrall RW, Kolev SD. Flow injection spectrophotometric determination of V(V) involving on-line separation using a poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane. Talanta 2018; 181:385-391. [DOI: 10.1016/j.talanta.2018.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/27/2022]
|
32
|
Bonggotgetsakul YYN, Cattrall RW, Kolev SD. The Effect of Surface Confined Gold Nanoparticles in Blocking the Extraction of Nitrate by PVC-Based Polymer Inclusion Membranes Containing Aliquat 336 as the Carrier. MEMBRANES 2018; 8:membranes8010006. [PMID: 29370125 PMCID: PMC5872188 DOI: 10.3390/membranes8010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/30/2022]
Abstract
Clusters of gold nanoparticles (AuNPs) formed on the surface of PVC-based polymer inclusion membranes (PIMs) with a liquid phase containing Aliquat 336 as the carrier and in some cases 1-dodecanol or 2-nitrophenol octyl ether as plasticizers were found to inhibit the extraction of nitrate by the PIMs. This observation was based on gradually increasing the mass of AuNPs on the membrane surface and testing the ability of the membrane to extract nitrate after each increase. In this way, it was possible to determine the so-called “critical AuNP masses” at which the studied membranes ceased to extract nitrate. On the basis of these results, it can be hypothesized that the surfaces of these PIMs are not homogeneous with respect to the distribution of their membrane liquid phases, which are present only at certain sites. Extraction takes place only at these sites, and at the “critical AuNP mass” of a PIM, all these extraction sites are blocked and the membrane loses its ability to extract.
Collapse
Affiliation(s)
| | - Robert W Cattrall
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|