1
|
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. MEMBRANES 2024; 14:221. [PMID: 39452833 PMCID: PMC11509221 DOI: 10.3390/membranes14100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as "marginal water". Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
2
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Yuan S, Yang X, Zhang N, Zhang J, Yuan S, Wang Z. Molecular insights into the adsorption and penetration of oil droplets on hydrophobic membrane in membrane distillation. WATER RESEARCH 2024; 253:121329. [PMID: 38387269 DOI: 10.1016/j.watres.2024.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling induced by oily substances significantly constrains membrane distillation performance in treating hypersaline oily wastewater. Overcoming this challenge necessitates a heightened fundamental understanding of the oil fouling phenomenon. Herein, the adsorption and penetration mechanism of oil droplets on hydrophobic membranes in membrane distillation process was investigated at the molecular level. Our results demonstrated that the adsorption and penetration of oil droplets were divided into four stages, including the free stage, contact stage, spreading stage, and equilibrium stage. Due to the extensive non-polar surface distribution of the polytetrafluoroethylene (PTFE) membrane (comprising 95.41 %), the interaction between oil molecules and PTFE was primarily governed by van der Waals interaction. Continuous oil droplet membrane fouling model revealed that the new oil droplet molecules preferred to penetrate into membrane pores where oil droplets already existed. The penetration of resin (a component of medium-quality oil droplets) onto PTFE membrane pores required the "pre-paving" of light crude oil. Finally, the ΔE quantitative structure-activity relationships (QSAR) models were developed to evaluate the penetration mechanism of pollutant molecules on the PTFE membrane. This research provides new insights for improving sustainable membrane distillation technologies in treating saline oily wastewater.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
4
|
Lee S, Cho H, Choi Y, Lee S. Application of Optical Coherence Tomography (OCT) to Analyze Membrane Fouling under Intermittent Operation. MEMBRANES 2023; 13:392. [PMID: 37103819 PMCID: PMC10141615 DOI: 10.3390/membranes13040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
There is increasing interest in membrane systems powered by renewable energy sources, including solar and wind, that are suitable for decentralized water supply in islands and remote regions. These membrane systems are often operated intermittently with extended shutdown periods to minimize the capacity of the energy storage devices. However, relatively little information is available on the effect of intermittent operation on membrane fouling. In this work, the fouling of pressurized membranes under intermittent operation was investigated using an approach based on optical coherence tomography (OCT), which allows non-destructive and non-invasive examination of membrane fouling. In reverse osmosis (RO), intermittently operated membranes were investigated by OCT-based characterization. Several model foulants such as NaCl and humic acids were used, as well as real seawater. The cross-sectional OCT images of the fouling were visualized as a three-dimensional volume using Image J. The OCT images were used to quantitatively measure the thickness of foulants on the membrane surfaces under different operating conditions. The results showed that intermittent operation retarded the flux decrease due to fouling compared to continuous operation. The OCT analysis showed that the foulant thickness was significantly reduced by the intermittent operation. The decrease in foulant layer thickness was found to occur when the RO process was restarted in intermittent operation.
Collapse
Affiliation(s)
- Song Lee
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Hyeongrak Cho
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Yongjun Choi
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Sangho Lee
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
- Desalination Technologies Research Institute (DTRI), Saline Water Conversion Corporation (SWCC), WQ36+XJP, Al Jubayl 35417, Saudi Arabia
| |
Collapse
|
5
|
Liu C, Liu J, Zhu L, Tang S, Xiong H. Direct visual observation of particle deposition in the different zones of MD flow field: Mechanisms of deposition and release. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Choice of DLVO approximation method for quantifying the affinity between latex particles and membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Park K, Lee D, Lim JH, Hong J, Lim G. Four-Dimensional Visualization of Microscale Dynamics of Membrane Oil Fouling via Synchrotron Radiation Microcomputed Tomography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9884-9891. [PMID: 35921519 DOI: 10.1021/acs.langmuir.2c01051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although oil-water separation technology via wettability-controlled membranes has emerged as a promising technology to treat oily wastewater, membrane fouling by faulents such as sludge flocs and colloids, and the consequent clogging of pores, severely degrades the efficiency of filtration systems. One of the main promotors of fouling by faulents is oil fouling, which is also a form of fouling itself. Despite considerable practical and academic interest in the analysis of oil-fouled membranes, direct visualization of the entire process of oil infiltration into hydrophilic membranes is still preliminary owing to (i) the similar optical contrast and physical density between oil and water, (ii) the low penetration depth of imaging methods, and (iii) the lack of 3D segmentation capability. In this study, microcomputed X-ray tomography using tunable synchrotron radiation provided direct high-speed 3D visualization of the microscale dynamics of the oil infiltration of a prewetted hydrophilic filter membrane over time. Direct visualization of the interfacial dynamics of oil infiltration opens a window into the complex liquid (water/oil)-gas-solid interface and thus helps furnish an in-depth understanding of oil fouling in the prewetted membrane.
Collapse
Affiliation(s)
- Kyungjin Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dongyun Lee
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jae-Hong Lim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jiwoo Hong
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 06978, Republic of Korea
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
9
|
|
10
|
Cui Z, Wang X, Ngo H, Zhu G. In-situ monitoring of membrane fouling migration and compression mechanism with improved ultraviolet technique in membrane bioreactors. BIORESOURCE TECHNOLOGY 2022; 347:126684. [PMID: 35007735 DOI: 10.1016/j.biortech.2022.126684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
An improved UV spectrum in-situ monitoring system was applied to explore the membrane fouling behavior in membrane bioreactors (MBRs). The changes in absorbance curve illustrated that the formation of a stubborn fouling layer includes the migration and compression of membrane surface foulants. The initial flux negatively correlates with the migration degree (unevenness) of membrane fouling, while fiber length is positively correlated. In further experiments, ultrasonic thickness measurement excludes fouling layer compression caused by spatial collapse under external force. Moisture content measurement tests demonstrated that the moisture content changed from 52% to 31% after fouling layer compression, which confirmed that the fouling layer compression is mainly caused by the "high pressure dehydration effect". Finally, a membrane backwashing strategy based on fouling layer compression theory indicated that the backwashing process should be carried out at a stage where the accumulation of membrane fouling is constant but the fouling layer is not compressed.
Collapse
Affiliation(s)
- Zhao Cui
- School of Energy and Environment, State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Huuhao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Guangcan Zhu
- School of Energy and Environment, State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
11
|
|
12
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Lay HT, Yeow RJE, Ma Y, Zydney AL, Wang R, Chew JW. Internal membrane fouling by proteins during microfiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Liu HB, Li B, Guo LW, Pan LM, Zhu HX, Tang ZS, Xing WH, Cai YY, Duan JA, Wang M, Xu SN, Tao XB. Current and Future Use of Membrane Technology in the Traditional Chinese Medicine Industry. SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1995875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hong-Bo Liu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, China
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Li
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Wei Guo
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin-Mei Pan
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Shu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, China
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wei-Hong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Yuan-Yuan Cai
- Nanjing Industrial Technology Research Institute of Membranes Co, Ltd, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Wang
- Pharmacy Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Si-Ning Xu
- Pharmacy Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xing-Bao Tao
- College ofPharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. MEMBRANES 2021; 11:789. [PMID: 34677555 PMCID: PMC8539029 DOI: 10.3390/membranes11100789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.
Collapse
Affiliation(s)
- Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| |
Collapse
|
16
|
|
17
|
Liu J, Li Z, Wang Y, Liu X, Tu G, Li W. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography. WATER RESEARCH 2021; 191:116809. [PMID: 33454650 DOI: 10.1016/j.watres.2021.116809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Deepening the understanding of scaling processes would facilitate the improvement of membrane distillation (MD) as a promising technique for sustainable development. This study investigated the scaling of calcium sulfate in MD via an approach based on optical coherence tomography (OCT). The OCT-based characterization enabled an analysis that correlated the flux decline with the morphological evolution of the scaling layer. It was revealed by this analysis that the reduction in the evaporation rate could be dominated by different mechanisms as the crystalline particles grew and deposited on the membrane surface; the striping phenomenon visualized by mapping the local growth rates provided evidence for the hydrodynamic instability induced by the coupled mass and heat transfer in MD. Moreover, the OCT-based characterization was exploited to unravel the interplay between the crystallization and the porous structure by quantifying the membrane deformation as a function of time; the varied precipitation kinetics in the boundary layer was confirmed by comparing the temporal variations in the OCT signals at different depths. All these results shed light on mechanisms underlying complex scaling processes, which are the basis for optimizing the design of MD.
Collapse
Affiliation(s)
- Jie Liu
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Yewei Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Guoquan Tu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China.
| |
Collapse
|
18
|
|
19
|
Tian J, Trinh TA, Kalyan MN, Ho JS, Chew JW. In-situ monitoring of oil emulsion fouling in ultrafiltration via electrical impedance spectroscopy (EIS): Influence of surfactant. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116919] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
22
|
Membrane fouling mitigation by fluidized granular activated carbon: Effect of fiber looseness and impact on irreversible fouling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Trinh TA, Li W, Chew JW. Internal fouling during microfiltration with foulants of different surface charges. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Liu X, Chen G, Tu G, Li Z, Deng B, Li W. Membrane fouling by clay suspensions during NF-like forward osmosis: Characterization via optical coherence tomography. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Rouquié C, Liu S, Rabiller-Baudry M, Riaublanc A, Frappart M, Couallier E, Szymczyk A. Electrokinetic leakage as a tool to probe internal fouling in MF and UF membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Chew JW, Kilduff J, Belfort G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
|
28
|
Han Q, Trinh TA, Tanis-Kanbur MB, Li W, Chew JW. Assessing internal fouling during microfiltration using optical coherence tomography and evapoporometry. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Li W, Liu X, Li Z, Fane AG, Deng B. Unraveling the film‐formation kinetics of interfacial polymerization via low coherence interferometry. AIChE J 2019. [DOI: 10.1002/aic.16863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiyi Li
- School of Environmental Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong People's Republic of China
| | - Xin Liu
- School of Environmental Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong People's Republic of China
| | - Zhuo Li
- School of Environmental Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong People's Republic of China
| | - Anthony G. Fane
- Singapore Membrane Technology CentreNanyang Technological University Singapore Singapore
| | - Baolin Deng
- Department of Civil and Environmental EngineeringUniversity of Missouri Columbia Missouri
| |
Collapse
|
30
|
Effects of membrane morphology on the rejection of oil droplets: Theoretical analysis based on network modeling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Rudolph G, Virtanen T, Ferrando M, Güell C, Lipnizki F, Kallioinen M. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117221] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Tanudjaja HJ, Chew JW. In-situ characterization of cake layer fouling during crossflow microfiltration of oil-in-water emulsion. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW. Membrane-based separation for oily wastewater: A practical perspective. WATER RESEARCH 2019; 156:347-365. [PMID: 30928529 DOI: 10.1016/j.watres.2019.03.021] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The large volumes of oily wastewater generated by various industries, such as oil and gas, food and beverage, and metal processing, need to be de-oiled prior to being discharged into the environment. Compared to conventional technologies such as dissolved air flotation (DAF), coagulation or solvent extraction, membrane filtration can treat oily wastewater of a much broader compositional range and still ensure high oil removals. In the present review, various aspects related to the practical implementation of membranes for the treatment of oily wastewater are summarized. First, sources and composition of oily wastewater, regulations that stipulate the extent of treatment needed before discharge, and the conventional technologies that enable such treatment are appraised. Second, commercially available membranes, membrane modules, operation modes and hybrids are overviewed, and their economics are discussed. Third, challenges associated with membrane filtration are examined, along with means to quantify and mitigate membrane fouling. Finally, perspectives on state-of-the-art techniques to facilitate better monitoring and control of such systems are briefly discussed.
Collapse
Affiliation(s)
- Henry J Tanudjaja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 37459, Singapore
| | - Charifa A Hejase
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 37459, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
34
|
Trinh TA, Han Q, Ma Y, Chew JW. Microfiltration of oil emulsions stabilized by different surfactants. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Lin YM, Song C, Rutledge GC. Direct Three-Dimensional Visualization of Membrane Fouling by Confocal Laser Scanning Microscopy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17001-17008. [PMID: 31034210 DOI: 10.1021/acsami.9b01770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Membrane-based separation is an important technique for removing emulsified oil from water. However, the mechanisms of fouling are complex because of the deformability and potential for coalescence and break-up of the oil droplets. Here, we report for the first time direct, three-dimensional (3D) visualization of oil droplets on electrospun fiber microfiltration membranes after a period of membrane-based separation of oil-in-water emulsions. High-resolution 3D images were acquired by a dual-channel confocal laser scanning microscopy (CLSM) technique in which both the fibers and the oil (dodecane) were fluorescently labeled. The morphology of dodecane as the foulant was observed for two different types of fibers, an oleophobic nylon (PA6(3)T), and oleophilic polyvinylidene fluoride (PVDF). Through direct visualization, the rejected oil was found to form droplets of clam-shell shape on the PA6(3)T fibers, whereas the oil tended to wet the PVDF fibers and spread across the membrane. The morphology was also analyzed as a function of separation time (i.e., "4D" imaging), as the oil accumulated within and upon the membranes. The observations are qualitatively consistent with a transition from blocking of individual pores in the membrane to coalescence of oil droplets into coherent liquid films with increasing filtration time. Analysis of permeate flux using blocking filtration models corroborate the transition of fouling modes indicated by the 3D images. This direct, 3D visualization CLSM technique is a powerful tool for characterizing the mechanisms of fouling in membranes used for liquid emulsion separations.
Collapse
|
36
|
|
37
|
Meng BY, Li XY. In Situ Visualization of Concentration Polarization during Membrane Ultrafiltration Using Microscopic Laser-Induced Fluorescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2660-2669. [PMID: 30694048 DOI: 10.1021/acs.est.8b05741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel noninvasive technique-microscopic laser-induced fluorescence (micro-LIF)-has been applied to achieve in situ visualization of concentration polarization (CP) of nanoparticles during cross-flow ultrafiltration at high resolutions. The reversible, highly dynamic nature of CP and its sensitive response to the filtration conditions were investigated and validated by direct visualization of the CP layer and the well depicted concentration profile near the membrane surface. Using micro-LIF, the formation of a CP layer during filtration and its back-diffusion after the filtration ceased can be directly observed. The dynamic variation of the CP layer with the cross-flow velocity and transmembrane pressure (TMP) change has also been demonstrated. The results showed that CP reached the steady state approximately 1 min after the filtration condition change. A higher cross-flow velocity and/or a lower TMP decrease the CP concentration and thickness. Further quantitative analysis of the filtration test results using the film theory model helps to obtain the particle concentration at the membrane surface and the thickness of the CP layer (30-50 μm). Accordingly, the nature of CP dynamics was characterized and the deficiency of the traditional CP model was explored.
Collapse
Affiliation(s)
- Bo-Yang Meng
- Environmental Engineering Research Centre, Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong, China
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute , Tsinghua University , Shenzhen 518055 , China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China
| |
Collapse
|
38
|
Salama A. Modeling of flux decline behavior during the filtration of oily-water systems using porous membranes: Effect of pinning of nonpermeating oil droplets. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Tanis-Kanbur MB, Velioğlu S, Tanudjaja HJ, Hu X, Chew JW. Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
|
41
|
Zoubeik M, Salama A, Henni A. Investigation of Oily Wastewater Filtration Using Polymeric Membranes: Experimental Verification of the Multicontinuum Modeling Approach. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mohamed Zoubeik
- Produced Water Laboratory, Faculty of Engineering and applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Amgad Salama
- Produced Water Laboratory, Faculty of Engineering and applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Amr Henni
- Produced Water Laboratory, Faculty of Engineering and applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|