1
|
Liu L, Lu JL, Liu YH, Hu CK, Wang KX, Lu CX, Mi L, Chen XC. MOF-Decorated Poly(tetrafluoroethylene) Membranes with Underwater Superoleophobicity for Extracting Osmotic Energy from Oily Wastewater Effluents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51496-51503. [PMID: 39265038 DOI: 10.1021/acsami.4c10263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Industrial processes generate huge volumes of oily saline wastewater. Instead of being sent to the drainage system immediately, extracting osmotic energy from these effluents represents a promising means to reuse these wastes and contributes to mitigate the ever-growing energy crisis. Herein, an MOF-decorated PTFE membrane is engineered to extract osmotic energy from oily wastewaters. Copper hydroxide nanowires (CHNs) are intertwined with polystyrenesulfonate sodium (PSS), deposited onto a poly(tetrafluoroethylene) (PTFE) membrane, and thereafter used as metal precursors to in situ generate HKUST-1 doped with negative charges. The resulting HKUST-1PSS@PTFE hybrid membrane possesses abundant angstrom-scale channels capable of transporting cations efficiently and features a hierarchically structured surface with underwater superoleophobicity. The energy conversion performance of the HKUST-1PSS3.5@PTFE membrane can reach an output power density of 6.21 W m-2 at a 50-fold NaCl gradient, which is superior to those of pristine PTFE membranes. Once exposed to oily saline wastewater, the HKUST-1PSS@PTFE membrane can exhibit an excellent oil-repellent ability, thus contributing to sustain its osmotic energy harvesting. This work may promote the development of antifouling osmotic energy harvesters with a long working life and pave the way to fully exploit oily wastewater effluents as valuable energy sources.
Collapse
Affiliation(s)
- Lin Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jia-Li Lu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yan-Hong Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Kui Hu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ke-Xin Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Xin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
2
|
Zhang H, Xian H. Review of Hybrid Membrane Distillation Systems. MEMBRANES 2024; 14:25. [PMID: 38248715 PMCID: PMC10820896 DOI: 10.3390/membranes14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Membrane distillation (MD) is an attractive separation process that can work with heat sources with low temperature differences and is less sensitive to concentration polarization and membrane fouling than other pressure-driven membrane separation processes, thus allowing it to use low-grade thermal energy, which is helpful to decrease the consumption of energy, treat concentrated solutions, and improve water recovery rate. This paper provides a review of the integration of MD with waste heat and renewable energy, such as solar radiation, salt-gradient solar ponds, and geothermal energy, for desalination. In addition, MD hybrids with pressure-retarded osmosis (PRO), multi-effect distillation (MED), reverse osmosis (RO), crystallization, forward osmosis (FO), and bioreactors to dispose of concentrated solutions are also comprehensively summarized. A critical analysis of the hybrid MD systems will be helpful for the research and development of MD technology and will promote its application. Eventually, a possible research direction for MD is suggested.
Collapse
Affiliation(s)
| | - Haizhen Xian
- School of Power, Energy and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;
| |
Collapse
|
3
|
Shah P, Hou Y, Butt HJ, Kappl M. Nanofilament-Coated Superhydrophobic Membranes Show Enhanced Flux and Fouling Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55119-55128. [PMID: 37962333 PMCID: PMC10694809 DOI: 10.1021/acsami.3c12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Membrane distillation (MD) is an important technique for brine desalination and wastewater treatment that may utilize waste or solar heat. To increase the distillation rate and minimize membrane wetting and fouling, we deposit a layer of polysiloxane nanofilaments on microporous membranes. In this way, composite membranes with multiscale pore sizes are created. The performance of these membranes in the air gap and direct contact membrane distillation was investigated in the presence of salt solutions, solutions containing bovine serum albumin, and solutions containing the surfactant sodium dodecyl sulfate. In comparison to conventional hydrophobic membranes, our multiscale porous membranes exhibit superior fouling resistance while attaining a higher distillation flux without using fluorinated compounds. This study demonstrates a viable method for optimizing MD processes for wastewater and saltwater treatment.
Collapse
Affiliation(s)
- Prexa Shah
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Youmin Hou
- School
of Power and Mechanical Engineering, Wuhan
University, 430072 Wuhan, China
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
5
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
6
|
Shi J, Zhang G, Zhang S, Lu R, Chen M. Biodegradation and optimization of bilge water in a sequencing batch reactor using response surface methodology. CHEMOSPHERE 2022; 307:135654. [PMID: 35863410 DOI: 10.1016/j.chemosphere.2022.135654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Bilge water is a significant source of pollution in the marine environment and has captured widespread international attention. In this study, a sequencing batch reactor (SBR) combined with strain S2 identified as Bacillus licheniformis was employed to assess the biodegradation of Chemical Oxygen Demand (COD) from bilge water. The influencing variables such as temperature, pH level and inoculum concentration on the performance SBR system were optimized by utilizing response surface methodology (RSM). The experimental results showed that the maximum COD removal of 77.81% was reached at the optimal SBR operation conditions of temperature 35.44 °C pH 8.13, and inoculum concentration 31.47 mL. In the practical application of SBR, it was found that the decrease in hydraulic retention time (HRT) was accompanied by a decrease in COD degradation rate. The biodegradation kinetics of COD in bilge water were well fitted with the first-order equation with a higher R2 value of 0.98106. In conclusion, COD in bilge water can be efficiently biodegraded by SBR under the optimization of RSM.
Collapse
Affiliation(s)
- Jianqiang Shi
- College of Merchant Marine, Shanghai Maritime University, Shanghai, 201306, China.
| | - Guichen Zhang
- College of Merchant Marine, Shanghai Maritime University, Shanghai, 201306, China
| | - Shaojun Zhang
- School of Navigation and Shipping, Shandong Jiaotong University, Weihai, 264200, China
| | - Run Lu
- College of Merchant Marine, Shanghai Maritime University, Shanghai, 201306, China
| | - Mengwei Chen
- College of Merchant Marine, Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
7
|
John J, Nambikattu J, Kaleekkal NJ. An integrated Nanofiltration-Membrane Distillation (NF-MD) process for the treatment of emulsified wastewater. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2131578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Juliana John
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Jenny Nambikattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, India
| |
Collapse
|
8
|
Modeling and Life Cycle Assessment of a Membrane Bioreactor–Membrane Distillation Wastewater Treatment System for Potable Reuse. SEPARATIONS 2022. [DOI: 10.3390/separations9060151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wastewater treatment for indirect potable reuse (IPR) is a possible approach to address water scarcity. In this study, a novel membrane bioreactor–membrane distillation (MBR-MD) system was evaluated to determine the environmental impacts of treatment compared to an existing IPR facility (“Baseline”). Physical and empirical models were used to obtain operational data for both systems and inform a life cycle inventory. Life cycle assessment (LCA) was used to compare the environmental impacts of each system. Results showed an average 53.7% reduction in environmental impacts for the MBR-MD system when waste heat is used to operate MD; however, without waste heat, the environmental impacts of MBR-MD are significantly higher, with average impacts ranging from 218% to 1400% greater than the Baseline, depending on the proportion of waste heat used. The results of this study demonstrate the effectiveness of the novel MBR-MD system for IPR and the reduced environmental impacts when waste heat is available to power MD.
Collapse
|
9
|
Yao X, Guan K, Sasaki Y, Shintani T, Nakagawa K, Matsuyama H. Zwitterion grafted forward osmosis membranes with superwetting property via atom transfer radical polymerization. J Appl Polym Sci 2022. [DOI: 10.1002/app.52689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuesong Yao
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
| | - Yuji Sasaki
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
| | - Takuji Shintani
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Graduate School of Science, Technology and Innovation Kobe University Kobe Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Graduate School of Science, Technology and Innovation Kobe University Kobe Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Department of Chemical Science and Engineering Kobe University Kobe Japan
| |
Collapse
|
10
|
Lu D, Zhou Z, Wang Z, Ho DT, Sheng G, Chen L, Zhao Y, Li X, Cao L, Schwingenschlögl U, Ma J, Lai Z. An Ultrahigh-Flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination using Low-Grade Heat. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109718. [PMID: 34990512 DOI: 10.1002/adma.202109718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation has attracted great attention in the development of sustainable desalination and zero-discharge processes because of its possibility of recovering 100% water and the potential for integration with low-grade heat, such as solar energy. However, the conventional membrane structures and materials afford limited flux thus obstructing its practical application. Here, ultrathin nanoporous graphene membranes are reported by selectively forming thin graphene layers on the top edges of a highly porous anodic alumina oxide support, which creates short and fast transport pathways for water vapor but not liquid. The process avoids the challenging pore-generation and substrate-transfer processes required to prepare regular graphene membranes. In the direct-contact membrane distillation mode under a mild temperature pair of 65/25 °C, the nanoporous graphene membranes show an average water flux of 421.7 L m-2 h-1 with over 99.8% salt rejection, which is an order of magnitude higher than any reported polymeric membranes. The mechanism for high water flux is revealed by detailed characterizations and theoretical modeling. Outdoor field tests using water from the Red Sea heated under direct sunlight radiation show that the membranes have an average water flux of 86.3 L m-2 h-1 from 8 am to 8 pm, showing a great potential for real applications in seawater desalination.
Collapse
Affiliation(s)
- Dongwei Lu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zongyao Zhou
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhihong Wang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Duc Tam Ho
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guan Sheng
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Long Chen
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiang Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Temperature Effects of MD on Municipal Wastewater Treatment in an Integrated Forward Osmosis and Membrane Distillation Process. Processes (Basel) 2022. [DOI: 10.3390/pr10020355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An integrated forward osmosis (FO)-membrane distillation (MD) process is promising for the treatment and resource recovery from municipal wastewater. As higher temperature is applied in MD, it could affect the performance of both FO and MD units. This study aimed to investigate the effects of the type of draw solution (DS) and feed solution (FS) such as ammonium solution or municipal wastewater containing ammonium at higher temperatures on membrane treatment performance. It is found that higher FS and DS temperatures resulted in a higher water flux and a higher RSF with either NaCl or glucose as DS due to the increased diffusivity and reduced viscosity of DS. However, the water flux increased by 23–35% at elevated temperatures with glucose as DS, higher than that with NaCl as DS (8–19%), while the reverse solute flux (RSF) increase rate with NaCl as DS was two times higher than that with glucose as DS. In addition, the use of NaCl as DS at higher temperatures such as 50 and FS at 42 °C resulted in increased forward ammonium permeation from the FS to the DS, whereas ammonium was completely rejected with glucose as DS at all operating temperatures. Reducing pH or lowering the temperature of DS could improve ammonium rejection and minimize ammonia escape to the recovered water, but extra cost or reduced MD performance could be led to. Therefore, the results suggest that in an integrated FO-MD process with DS at higher temperatures such as 50 °C, glucose is better than NaCl as DS. Furthermore, a simplified heat balance estimation suggests that internal heat recovery in the FO-MD system is very necessary for treating municipal wastewater treatment. This study sheds light on the selection of DS in an integrated FO-MD process with elevated temperature of both FS and DS for the treatment of wastewater containing ammonium. In addition, this study highlights the necessity of internal heat recovery in the integrated FO-MD system.
Collapse
|
12
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Gryta M. Resistance of Polypropylene Membrane to Oil Fouling during Membrane Distillation. MEMBRANES 2021; 11:membranes11080552. [PMID: 34436315 PMCID: PMC8400933 DOI: 10.3390/membranes11080552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
The influence of oil emulsion presence in the water on the course of water desalination by membrane distillation was studied. The feed water was contaminated by oil collected from the bilge water. The impact of feed composition on the wetting resistance of hydrophobic polypropylene membranes was evaluated during long-term studies. Two types of the capillary membranes fabricated by thermally induced phase separation method were tested. It has been found that these membranes were non-wetted during the separation of NaCl solutions over a period of 500 h of modules exploitation. The addition of oil (5-100 mg/L) to the feed caused a progressive decline of the permeate flux up to 30%; however, the applied hydrophobic membranes retained their non-wettability for the consecutive 2400 h of the process operation. It was indicated that several compounds containing the carbonyl group were formed on the membranes surface during the process. These hydrophilic compounds facilitated the water adsorption on the surface of polypropylene which restricted the oil deposition on the membranes used.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
14
|
Impact of osmotic and thermal isolation barrier on concentration and temperature polarization and energy efficiency in a novel FO-MD integrated module. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
|
16
|
Li M, Li K, Wang L, Zhang X. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation. WATER RESEARCH 2020; 172:115488. [PMID: 31951948 DOI: 10.1016/j.watres.2020.115488] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The forward osmosis-membrane distillation (FO-MD) hybrid process has shown great promise in achieving zero liquid discharge in the textile industry, recovering valuable dye molecules while producing large amounts of clean water. However, the progress of this technology seems to have stagnated with the direct coupling of commercial asymmetric FO and MD membranes, because water management in the system is found to be rather complicated owing to the processing of the different membranes. Herein, we propose, for the first time, an FO-MD hybrid process using a custom-made self-standing and symmetric membrane and a hydrophobic polytetrafluoroethylene membrane in the FO and MD units, respectively. Three types of operation modes were investigated to systematically study the process performance in the concentration treatment of model textile wastewater; two commercial FO membranes were also tested for comparison. Owing to its low fouling propensity and lack of an internal concentration polarization effect, the water transfer rate of our symmetric FO membrane quickly reaches equilibrium with that in the MD unit, resulting in continuous and stable operation. Consequently, the hybrid process using the symmetric FO membrane was found to consume the least energy, as indicated by its lowest total cost in both lab- and large-scale systems. Overall, our study provides a new strategy for using a symmetric FO membrane in the FO-MD hybrid process and highlights its great potential for use in the treatment of textile wastewater.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kun Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
17
|
Ang WL, Mohammad AW, Johnson D, Hilal N. Unlocking the application potential of forward osmosis through integrated/hybrid process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136047. [PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
Collapse
Affiliation(s)
- Wei Lun Ang
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Abdul Wahab Mohammad
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Daniel Johnson
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Nidal Hilal
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Swansea SA1 8EN, UK; NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Abstract
AbstractMembrane distillation was used for the treatment of saline oily wastewaters collected from harbour deoiling installation. The turbidity of these wastewaters was in the range 63–87 NTU, salt concentration was 6–11 g/L and the oil content in the feed was below 40 mg/L. Two types of commercial polypropylene capillary membranes were applied for the process study. The intensive membrane fouling during the wastewater separation was observed. Modules rinsed with water removed the organic deposits formed. However, the CaCO3 scale was accumulated on the membrane surfaces during 1500 h of the process, resulting in a permeate flux decline by more than 40%. The initial yield of modules was recovered by membrane rinsing with 5 wt% HCl solution. The long-term studies demonstrated that the separated oily wastewaters did not cause wetting of the applied membrane. The degree of retention amounted to 98% for the inorganic compounds and more than 99% for the organic compounds.
Collapse
|
19
|
Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment. WATER 2019. [DOI: 10.3390/w12010107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.
Collapse
|
20
|
Effects of membrane morphology on the rejection of oil droplets: Theoretical analysis based on network modeling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Siyal MI, Lee CK, Park C, Khan AA, Kim JO. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:45-66. [PMID: 31078929 DOI: 10.1016/j.jenvman.2019.04.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.
Collapse
Affiliation(s)
- Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea; Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Chansoo Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Aftab Ahmed Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
22
|
Bao X, Wu Q, Shi W, Wang W, Zhu Z, Zhang Z, Zhang R, Zhang B, Guo Y, Cui F. Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Choudhury MR, Anwar N, Jassby D, Rahaman MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process - A review. Adv Colloid Interface Sci 2019; 269:370-399. [PMID: 31129338 DOI: 10.1016/j.cis.2019.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Fouling and wetting of membranes are significant concerns that can impede the widespread application of the membrane distillation (MD) process during high-salinity wastewater reclamation. Fouling, caused by the accumulation of undesirable materials on the membrane surface and pores, causes a decrease in permeate flux. Membrane wetting, the direct permeation of the feed solution through the membrane pores, results in reduced contaminant rejection and overall process failure. Lately, the application of MD for water recovery from various types of wastewaters has gained increased attention among researchers. In this review, we discuss fouling and wetting phenomena observed during the MD process, along with the effects of various mitigation strategies. In addition, we examine the interactions between contaminants and different types of MD membranes and the influence of different operating conditions on the occurrence of fouling and wetting. We also report on previously investigated feed pre-treatment options before MD, application of integrated MD processes, the performance of fabricated/modified MD membranes, and strategies for MD membrane maintenance during water reclamation. Energy consumption and economic aspects of MD for wastewater recovery is also discussed. Throughout the review, we engage in dialogues highlighting research needs for furthering the development of MD: the incorporation of MD in the overall wastewater treatment and recovery scheme (including selection of appropriate membrane material, suitable pre-treatment or integrated processes, and membrane maintenance strategies) and the application of MD in long-term pilot-scale studies using real wastewater.
Collapse
|
24
|
Bao X, Wu Q, Shi W, Wang W, Yu H, Zhu Z, Zhang X, Zhang Z, Zhang R, Cui F. Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. WATER RESEARCH 2019; 153:1-10. [PMID: 30684821 DOI: 10.1016/j.watres.2018.12.067] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Developing a forward osmosis (FO) membrane with superior ammonia selectivity and robust antifouling performance is important for treating domestic wastewater (DW) but challenging due to the similar polarities and hydraulic radii of NH4+ and water molecules. Herein, we investigated the feasibility of using polyamidoamine (PAMAM) dendrimer to simultaneously enhance the ammonia rejection rate and antifouling capacity of the thin-film composite (TFC) FO membrane. PAMAM dendrimer with abundant, easily-protonated, terminal amine groups was grafted on TFC-FO membrane surface via covalent bonds, which inspired the TFC-FO membrane surface with appreciable Zeta potential (isoelectric point: pH = 5.5) and outstanding hydrophilicity (water contact angle: 39.83 ± 0.57°). Benefiting from the electrostatic repulsion between the protonated amine layer and NH4+-N as well as the concentration-induced diffusion resistance, the introduction of PAMAM dendrimer endowed the grafted membrane with a superior NH4+-N rejection rate of 98.23% and a significantly reduced the reverse solute flux when using NH4Cl solutions as feed solution. Meanwhile, the perfect balance between the electrostatic repulsion to positively-charged micromoleculer ions (metal ions and NH4+-N) and the electrostatic attraction to negatively-charged macromolecular organic foulants together with the hydrophilic nature of amine groups facilitated the enhancement of the grafted membranes in antifouling capacity and hence the NH4+-N selectivity (rejection rate of 91.81%) during the concentration of raw DW. The overall approach of this work opens up a frontier for preparation of ammonia-selective and antifouling TFC-FO membrane.
Collapse
Affiliation(s)
- Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhigao Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fuyi Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
25
|
Kim Y, Li S, Francis L, Li Z, Linares RV, Alsaadi AS, Abu-Ghdaib M, Son HS, Amy G, Ghaffour N. Osmotically and Thermally Isolated Forward Osmosis-Membrane Distillation (FO-MD) Integrated Module. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3488-3498. [PMID: 30848585 DOI: 10.1021/acs.est.8b05587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we propose a novel module design to integrate forward osmosis (FO) and membrane distillation (MD). The two processes are sealed in one module and operated simultaneously, making the system compact and suitable for a wide range of applications. To evaluate the system under large-scale module operating conditions, FO and MD experiments were performed separately. The effect of draw solution (DS) temperature on the FO performance was first assessed in terms of flux, reverse salt flux (RSF), and specific RSF (SRSF). While a higher DS temperature resulted in an increased RSF, a higher FO flux was achieved, with a lower SRSF. The influence of DS concentration on the MD performance was then investigated in terms of flux and salt rejection. High DS concentration had a slightly negative impact on MD water vapor flux, but the MD membrane was a complete barrier for DS salts. The FO-MD integrated module was simulated based on mass balance equations. Results indicated that initial DS (MD feed) flow rate and concentration are the most important factors for stable operation of the integrated module. Higher initial DS flow rate and lower initial DS concentration can achieve a higher permeate rate of the FO-MD module.
Collapse
Affiliation(s)
- Youngjin Kim
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Guangzhou Institute of Advanced Technology , CAS , Haibin Road #1121 , Nansha district, Guangzhou 511458 , China
| | - Lijo Francis
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Qatar Environment and Energy Research Institute (QEERI) , Hamad Bin Khalifa University (HBKU) , Qatar Foundation. P.O. Box 34110, Doha , Qatar
| | - Zhenyu Li
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- College of Food Science and Engineering , Northwest A&F University , Shaanxi 712100 , China
| | - Rodrigo Valladares Linares
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Renewable Energy Unit , Yucatan Center for Scientific Research (CICY) , 43 Street #130 , Chuburna de Hidalgo, 97205 , Merida , Yucatan , Mexico
| | - Ahmad S Alsaadi
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Department of Chemical Engineering , University of Jeddah , Jeddah 21959 , Saudi Arabia
| | - Muhannad Abu-Ghdaib
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| | - Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| | - Gary Amy
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- College of Engineering and Science , Clemson University , Clemson , South Carolina 29634 , United States
- Chemical and Biomolecular Engineering , National University of Singapore , 119077 Singapore
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
26
|
Volpin F, Chekli L, Phuntsho S, Ghaffour N, Vrouwenvelder J, Shon HK. Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Zhao Y, Lu D, Cao Y, Luo S, Zhao Q, Yang M, Xu C, Ma J. Interaction Analysis between Gravity-Driven Ceramic Membrane and Smaller Organic Matter: Implications for Retention and Fouling Mechanism in Ultralow Pressure-Driven Filtration System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13718-13727. [PMID: 30452244 DOI: 10.1021/acs.est.8b03618] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gravity-driven membranes (GDM) generally achieve high retention performance in filtration of organic matter with a smaller size than the membrane pore, yet the in-depth mechanism remains unclear. Thorough analysis of the retention mechanism is crucial for optimizing GDM properties and improving GDM filtration performance. The performance and interaction mechanism of gravity-driven ceramic membrane (GDCM) filtrating smaller organic matter (SOM) were systematically studied. Rejection rate grew noticeably for like-charged foulant, whereas it only grew slightly for opposite-charged foulant as operation height decreased. Flux declined more seriously at lower operation height, probably due to heavier cake fouling caused by the rejected foulant. Interactions of ceramic membrane-SOM were analyzed through extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO) and hydrodynamic permeation drag (PD). Among van der Waals (LW), acid-base (AB), and electrostatic (EL) forces in XDLVO, EL played a significant role on GDCM filtrating SOM, and altering membrane electrostatic property could greatly influence SOM filtration. Furthermore, the rising PD force largely weakened the EL dominant zone with operation height increasing, while barely influencing the LW and AB dominant zones. Therefore, the weakened EL-dominant repulsive zone caused less rejection of like-charged foulant with operation height increasing. Fe2O3- and MnO2-modified membranes further validated the comprehensive influence of LW, AB, EL, and PD interactions on GDCM filtration. The possible "trade-off" of pore blocking-cake fouling with operation height decreasing demonstrated potential enhancement for both rejection and antifouling performance by electrically modified membrane under ultralow pressure. This study provides insight on membrane selection/preparation/modification and performance control of ultralow pressure-driven filtration.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Ying Cao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Shuangjiang Luo
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Mo Yang
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Chengbiao Xu
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| |
Collapse
|
28
|
Ahmad NA, Goh PS, Abdul Karim Z, Ismail AF. Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges. MEMBRANES 2018; 8:E86. [PMID: 30248932 PMCID: PMC6315848 DOI: 10.3390/membranes8040086] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Oily wastewater discharge from various industry processes and activities have caused dramatic impacts on the human and environment. Treatment of oily wastewater using membrane technology has gained worldwide attention due to its efficiency in removing the amount and concentration of oil and grease as well as other specific pollutants in order to be reused or to fulfill stringent discharge standard. The application of thin film composite (TFC) membrane in reverse osmosis (RO) and forward osmosis (FO) for oily wastewater treatment is an emerging and exciting alternative in this field. This review presents the recent and distinctive development of TFC membranes to address the issues related to oily wastewater treatment. The recent advances in terms of TFC membrane design and separation performance evaluation are reviewed. This article aims to provide useful information and strategies, in both scientific knowledge advancement and practical implementation point of view, for the application TFC membrane for oily wastewater treatment.
Collapse
Affiliation(s)
- Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Zulhairun Abdul Karim
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| |
Collapse
|