1
|
Choi J, Choi K, Kwon Y, Kim D, Yoo Y, Im SG, Koh DY. Ultrathin organosiloxane membrane for precision organic solvent nanofiltration. Nat Commun 2024; 15:2800. [PMID: 38555289 PMCID: PMC10981765 DOI: 10.1038/s41467-024-47115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Promising advances in membrane technology can lead to energy-saving and eco-friendly solutions in industrial sectors. This work demonstrates a highly selective membrane with ultrathin and highly interconnected organosiloxane polymer nanolayers by initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150-300 g mol-1. We optimize the poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) membrane by adjusting both the thickness of the selective layer and the pore sizes of its support membranes. Notably, the 29 nm selective layer imparts a uniformly narrow molecular sieving property, providing a record-high solute-solute selectivity of 39.88 for different-sized solutes. Furthermore, a solute-solute selectivity of 11.04 was demonstrated using the real-world active pharmaceutical ingredient mixture of Acyclovir and Valacyclovir, key components for Herpes virus treatment, despite their molecular weight difference of less than 100 g mol-1. The highly interconnected membrane is expected to meet rigorous requirements for high-standard active pharmaceutical ingredient separation.
Collapse
Affiliation(s)
- Jihoon Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keonwoo Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - YongSung Kwon
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Daehun Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Youngmin Yoo
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Mostafavi AH, Mishra AK, Gallucci F, Kim JH, Ulbricht M, Coclite AM, Hosseini SS. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J Appl Polym Sci 2023. [DOI: 10.1002/app.53720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
| | - Ajay Kumar Mishra
- College of Medicine and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Division of Nanomaterials Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Fausto Gallucci
- Inorganic Membranes and Membrane Reactors, Sustainable Process Engineering, Department of Chemical Engineering and Chemistry Eindhoven University of Technology Eindhoven MB The Netherlands
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul South Korea
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II Universität Duisburg‐Essen Essen Germany
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Graz Austria
| | - Seyed Saeid Hosseini
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
- Department of Chemical Engineering Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
3
|
Zhang P, Li R. Preparation and performance of acrylic acid grafted PES ultrafiltration membrane via plasma surface activation. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A modified PES ultrafiltration membrane with excellent separation and antifouling properties was obtained after modification by remote Ar–NH3 plasma-induced acrylic acid (AA) grafting. Hydrophilic properties were characterised using water contact angle measurements. The morphology was analysed using SEM and BET measurements. Changes in the surface functional groups were determined using XPS and ATR-FTIR. The separation and antifouling properties were evaluated through a bovine serum albumin (BSA) separation experiment. The results revealed that the surface structure of the modified membrane was not destroyed, that amino groups were introduced on the surface of the PES membrane, and that AA was successfully grafted. The water contact angle decreased from 67° in the original membrane to 5 ± 0.63° in the modified membrane. The water flux increased from 30 to 93.6 L/(m2·h). The rejection rate of BSA increased from 61.5 to 93.8%, and the flux recovery rate increased from 60.0 to 92.3%.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, PR China
| | - Ru Li
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, PR China
| |
Collapse
|
4
|
Shi GM, Feng Y, Li B, Tham HM, Lai JY, Chung TS. Recent progress of organic solvent nanofiltration membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101470] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Nagasawa H, Yasunari R, Kawasaki M, Kanezashi M, Tsuru T. Facile low-temperature route toward the development of polymer-supported silica-based membranes for gas separation via atmospheric-pressure plasma-enhanced chemical vapor deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties. MEMBRANES 2020; 10:membranes10120401. [PMID: 33297433 PMCID: PMC7762233 DOI: 10.3390/membranes10120401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022]
Abstract
In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.
Collapse
|
7
|
Chiao YH, Patra T, Belle Marie Yap Ang M, Chen ST, Almodovar J, Qian X, Wickramasinghe SR, Hung WS, Huang SH, Chang Y, Lai JY. Zwitterion Co-Polymer PEI-SBMA Nanofiltration Membrane Modified by Fast Second Interfacial Polymerization. Polymers (Basel) 2020; 12:polym12020269. [PMID: 32012761 PMCID: PMC7077497 DOI: 10.3390/polym12020269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.
Collapse
Affiliation(s)
- Yu-Hsuan Chiao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Tanmoy Patra
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Shu-Ting Chen
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Department of Chemical and Materials Engineering, National Ilan University, Yi-Lan 26047, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
| |
Collapse
|