1
|
Understanding the molecular origin of the superior toughness of polyamide-6/polyketone blends by solid-state NMR spectroscopy. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Hu Y, Zhao P, Liu H, Yi X, Song W, Wang X. Photocatalytic thin film composite forward osmosis membrane for mitigating organic fouling in active layer facing draw solution mode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Suwaileh W, Zargar M, Abdala A, Siddiqui F, Khiadani M, Abdel-Wahab A. Concentration polarization control in stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Zhang L, Gonzales RR, Istirokhatun T, Lin Y, Segawa J, Shon HK, Matsuyama H. In situ engineering of an ultrathin polyamphoteric layer on polyketone-based thin film composite forward osmosis membrane for comprehensive anti-fouling performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Hu Y, Li Q, Guo Y, Zhu L, Zeng Z, Xiong Z. Nanofiltration‐like forward osmosis membranes on in‐situ mussel‐modified polyvinylidene fluoride porous substrate for efficient salt/dye separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Ning Hu
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Qiao‐Mei Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Yan‐Feng Guo
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Li‐Jing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhi‐Xiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhu Xiong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering Guangzhou University Guangzhou Guangdong China
| |
Collapse
|
7
|
Enabling polyketone membrane with underwater superoleophobicity via a hydrogel-based modification for high-efficiency oil-in-water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118705] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Nakagawa K, Uchida K, Wu JLC, Shintani T, Yoshioka T, Sasaki Y, Fang LF, Kamio E, Shon HK, Matsuyama H. Fabrication of porous polyketone forward osmosis membranes modified with aromatic compounds: Improved pressure resistance and low structural parameter. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
He M, Wang L, Lv Y, Wang X, Zhang Z, Cui Q, Zhu J. Effect of a novel hydrophilic double-skinned support layer on improving anti-fouling performance of thin-film composite forward osmosis membrane. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Zhou J, He HL, Sun F, Su Y, Yu HY, Gu JS. Structural parameters reduction in polyamide forward osmosis membranes via click modification of the polysulfone support. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Liu C, Takagi R, Cheng L, Saeki D, Matsuyama H. Enzyme-aided forward osmosis (E-FO) process to enhance removal of micropollutants from water resources. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kedwell KC, Christensen ML, Quist-Jensen CA, Jørgensen MK. Effect of reverse sodium flux and pH on ammoniacal nitrogen transport through biomimetic membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Zhang X, Xie M, Yang Z, Wu HC, Fang C, Bai L, Fang LF, Yoshioka T, Matsuyama H. Antifouling Double-Skinned Forward Osmosis Membranes by Constructing Zwitterionic Brush-Decorated MWCNT Ultrathin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19462-19471. [PMID: 31071260 DOI: 10.1021/acsami.9b03259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure retarded osmosis (PRO) process is hindered by severe fouling occurring within the porous support of the forward osmosis (FO) membranes. We designed a novel double-skinned FO membrane containing a polyamide salt-rejecting layer and a zwitterionic brush-decorated, multiwalled carbon nanotube (MWCNT/PSBMA) foulant-resisting layer on the back side. Our results demonstrated that the coating of the MWCNT/PSBMA layer on the porous polyketone (PK) support imparted enhanced hydrophilicity and smaller membrane pore size, thereby providing excellent resistance toward both protein adhesion and bacterial adsorption. We also further evaluated this resultant double-skinned membrane (i.e., TFC-MWCNT/PSBMA) in dynamic PRO fouling experiments using protein and alginate as model organic foulants. Compared to the pristine TFC-PK and hydrophobic TFC-MWCNT membranes, the TFC-MWCNT/PSBMA membrane exhibited not only the lowest water flux decline but also the highest water flux recovery after simple physical flushing. These results shed light on fabrication of antifouling PRO membranes for water purification purposes.
Collapse
Affiliation(s)
- Xinyu Zhang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ming Xie
- Department of Chemical Engineering , University of Bath , Bath BA27AY , U.K
| | - Zhe Yang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Hao-Chen Wu
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Chuanjie Fang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| | - Li-Feng Fang
- Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| |
Collapse
|
14
|
Wang J, Zhang S, Wu P, Shi W, Wang Z, Hu Y. In Situ Surface Modification of Thin-Film Composite Polyamide Membrane with Zwitterions for Enhanced Chlorine Resistance and Transport Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12043-12052. [PMID: 30817111 DOI: 10.1021/acsami.8b21572] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-performance chlorine-resistant thin-film composite (TFC) membranes with zwitterions were fabricated by in situ surface modification of polyamide with 2,6-diaminopyridine and the subsequential quaternization with 3-bromopropionic. The successful modification of the TFC polyamide surface with zwitterions was confirmed by various characterizations including surface chemistry, surface hydrophilicity, and surface charge. The transport performance of the membrane was measured in both of the cross-flow reverse osmosis (RO) and forward osmosis processes, and the results showed that the modified TFC membrane improved both of its water permeability and perm-selectivity with the increased A and A/ B ratios upon modification with zwitterions. The chlorination challenging experiments were performed to demonstrate that the modified membrane enhanced its chlorine resistance without affecting its salt rejection upon 16 000 ppm·h chlorination exposure. A chlorination mechanism study illustrated that the modified membrane with zwitterions could prevent the Orton rearrangement of the benzene ring of the polyamide layer. Importantly and excitingly, the optimal chlorinated TFC membrane with zwitterions achieved a very high water flux of 72.15 ± 2.55 LMH with 99.67 ± 0.09% of salt rejection in the cross-flow RO process under 15 bar.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| | - Si Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Pengfei Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798
| | - Zhi Wang
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Research on Membrane Science and Technology, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| |
Collapse
|
15
|
Li M, Wang X, Porter CJ, Cheng W, Zhang X, Wang L, Elimelech M. Concentration and Recovery of Dyes from Textile Wastewater Using a Self-Standing, Support-Free Forward Osmosis Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3078-3086. [PMID: 30801184 DOI: 10.1021/acs.est.9b00446] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Forward osmosis (FO) can potentially treat textile wastewaters with less fouling than pressure-driven membrane processes such as reverse osmosis and nanofiltration. However, conventional FO membranes with asymmetric architecture experience severe flux decline caused by internal concentration polarization and fouling as dye molecules accumulate on the membrane surface. In this study, we present a new strategy for concentrating dye by using a self-standing, support-free FO membrane with a symmetric structure. The membrane was fabricated by a facile solution-casting approach based on a poly(triazole- co-oxadiazole- co-hydrazine) (PTAODH) skeleton. Due to its dense architecture, ultrasmooth surface, and high negative surface charge, the PTAODH membrane exhibits excellent FO performance with minimal fouling, low reverse salt flux, and negligible dye passage to the draw solution side. Cleaning with a 40% alcohol solution, after achieving a concentration factor of ∼10, resulted in high flux recovery ratio (98.7%) for the PTAODH membrane, whereas significant damage to the active layers of two commercial FO membranes was observed. Moreover, due to the existence of cytotoxic oxadiazole and triazole moieties in the polymer structure, our PTAODH membrane exhibited an outstanding antibacterial property with two model bacteria. Our results demonstrate the promising application of the symmetric PTAODH membrane for the concentration of textile wastewaters and its superior antifouling performance compared to state-of-the-art commercial FO membranes.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
| | - Xi Wang
- School of Chemical Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
| | - Cassandra J Porter
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Wei Cheng
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| |
Collapse
|