1
|
Kis DI, Bata A, Takács J, Kókai E. Mechanical Properties of Clay-Reinforced Polyamide 6 Nanocomposite Liner Materials of Type IV Hydrogen Storage Vessels. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1385. [PMID: 39269047 PMCID: PMC11397370 DOI: 10.3390/nano14171385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
This study focuses on polyamide 6/organo-modified montmorillonite (PA6/OMMT) nanocomposites as potential liner materials, given the growing interest in enhancing the performance of type IV composite overwrapped hydrogen storage pressure vessels. The mechanical properties of PA6/OMMT composites with varying filler concentrations were investigated across a temperature range relevant to hydrogen storage conditions (-40 °C to +85 °C). Liner collapse, a critical issue caused by rapid gas discharge, was analyzed using an Ishikawa diagram to identify external and internal factors. Mechanical testing revealed that higher OMMT content generally increased stiffness, especially at elevated temperatures. The Young's modulus and first yield strength exhibited non-linear temperature dependencies, with 1 wt. per cent OMMT content enhancing yield strength at all tested temperatures. Dynamic mechanical analysis (DMA) indicated that OMMT improves the storage modulus, suggesting effective filler dispersion, but it also reduces the toughness and heat resistance, as evidenced by lower glass transition temperatures. This study underscores the importance of optimizing OMMT content to balance mechanical performance and thermal stability for the practical application of PA6/OMMT nanocomposites in hydrogen storage pressure vessels.
Collapse
Affiliation(s)
- Dávid István Kis
- Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Attila Bata
- Department of Innovative Vehicles and Materials, GAMF Faculty of Mechanical Engineering and Computer Science, John von Neumann University, H-6000 Kecskemét, Hungary
| | - János Takács
- Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Eszter Kókai
- Department of Applied Sustainability, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary
| |
Collapse
|
2
|
Sahraeeazartamar F, Terryn S, Sangma RN, Krack M, Peeters R, Van den Brande N, Deferme W, Vanderborght B, Van Assche G, Brancart J. Diels-Alder Network Blends as Self-Healing Encapsulants for Liquid Metal-Based Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34192-34212. [PMID: 38915136 DOI: 10.1021/acsami.4c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Two dynamic covalent networks based on the Diels-Alder reaction were blended to exploit the properties of the dissimilar polymer backbones. Furan-functionalized polyether amines based on poly(propylene oxide) (PPO) FD4000 and polydimethylsiloxane (PDMS) FS5000 were mixed in a common solvent and reversibly cross-linked with the same bismaleimide DPBM. The morphology of the phase-separated blends is primarily controlled by the concentration of backbones. Increasing the PDMS content of the blends results in a dilute droplet morphology at 25 wt %, with a growing size and concentration of droplets and the formation of two separate PPO- and PDMS-rich layers at 50 wt %. Further increasing the PDMS content to 75 wt % leads to larger droplets and a thicker layer of the secondary phase. The hydrophobic PDMS phase creates a barrier against water, while the more hydrophilic PPO phase enhances the resistance against oxygen diffusion. Lowering the maleimide-to-furan stoichiometric ratio resulted in a decrease in cross-link density and thus more flexible and stretchable encapsulants. Changes in the stoichiometric ratio also affected the phase morphology due to resulting changes in phase separation and network formation kinetics. Lowering the stoichiometric ratio also resulted in enhanced self-healing properties of 96% at room temperature as a consequence of the increased chain mobility in the blended networks. The self-healing blends were used to encapsulate liquid metal circuits to create stretchable strain sensors with a linear electro-mechanical response without much drift or hysteresis, which could be efficiently recovered by 90% after the damage-healing cycles.
Collapse
Affiliation(s)
- Fatemeh Sahraeeazartamar
- Lab of Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering Research Group (SUME), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Seppe Terryn
- Brubotics, Department of Mechanical Engineering, Vrije Universiteit Brussel and IMEC, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Rathul Nengminza Sangma
- Brubotics, Department of Mechanical Engineering, Vrije Universiteit Brussel and IMEC, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Maximilian Krack
- Institute for Materials Research (IMO) and IMEC (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Roos Peeters
- Materials and Packaging Research & Services (MPR&S), Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Niko Van den Brande
- Lab of Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering Research Group (SUME), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim Deferme
- Institute for Materials Research (IMO) and IMEC (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Bram Vanderborght
- Brubotics, Department of Mechanical Engineering, Vrije Universiteit Brussel and IMEC, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Guy Van Assche
- Lab of Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering Research Group (SUME), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Joost Brancart
- Lab of Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering Research Group (SUME), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
3
|
Fouda SR, Hassan SA. Impact of LaZnFe 2O 4 supported NiWO 4@D 400-MMT@CMS/MMA nanocomposites as a catalytic system in remediation of dyes from wastewater. Sci Rep 2024; 14:11644. [PMID: 38773135 PMCID: PMC11109166 DOI: 10.1038/s41598-024-61565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/19/2023] [Indexed: 05/23/2024] Open
Abstract
Herein, a novel nanocomposite based on lanthanum zinc ferrite and nickel tungstate was created by incorporation between (MMT-jeffamine-400) nanoparticles (NPs), chloromethyl styrene as a binder and polymethyl methacrylate monomer using solution polymerization. The as-designed nanocomposites were employed to confiscate xylenol orange "X.O" as an acidic dye and rhodamine B "RhB" as "an amphoteric dye" from colored wastewater. The impact of several parameters such as solution pH, initial dye concentration, the effect of time, and the effect of temperature was explored. The consequences indicated that the pure organoclay had negligible adsorption while that composed of organoclay with PMMA@CMS-polymer incorporated with LaZnFe2O4@NiWO4 particles detached more than 90% for xylenol orange (XO) and 93% for "rhodamine B" molecules. Electrostatic interactions are the predominant factor in the adsorption of cationic and amphoteric adsorbates, as proven by zeta-potential measurement. Additionally, the adsorbent may be regenerate and utilized up to five times with good adsorption capabilities by adding sodium hydroxide. As a result, the removal can be effectively accomplished using the nanocomposite as an adsorbent. The actual and theoretical adsorption capacity values for both dyes at all doses were closely matched, which supported the adsorption kinetics data that fit the pseudo-first order rate model well. The adsorption data's correlation values (0.995 for XO and 0.98 for RhB) indicated that both dyes' Langmuir adsorption would perform well. Furthermore, the adsorption of XO and RhB dyes on the adsorbent is confirmed to be a viable reaction by the negative values of ΔGo. The enhanced adsorbent material for the removal of amphoteric and anionic dyes from waste water is the synthesized LaZnFe2O4 supported NiWO4@D400-MMT@CMS/MMA nanocomposites, which exhibits a reusability affinity of up to five cycles.
Collapse
Affiliation(s)
- Safaa R Fouda
- Chemical Engineering Department, Higher Institute of Engineering and Technology, MNF-HEIT, Cairo, Egypt.
| | - Salah A Hassan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
4
|
Li J, Chai X, Gu Y, Zhang P, Yang X, Wen Y, Xu Z, Jiang B, Wang J, Jin G, Qiu X, Zhang T. Small-Scale High-Pressure Hydrogen Storage Vessels: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:721. [PMID: 38591616 PMCID: PMC10856517 DOI: 10.3390/ma17030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 04/10/2024]
Abstract
Nowadays, high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity, rapid charging/discharging of hydrogen, and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies, there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers, including metal cylinders, carbon fiber composite cylinders, and emerging glass material-based hydrogen storage containers. Furthermore, it introduces the relevant principles and theoretical studies, showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally, this article provides an outlook on the future development of high-pressure hydrogen storage containers.
Collapse
Affiliation(s)
- Jian Li
- Nanjing Institute of Future Energy System, Nanjing 211135, China; (J.L.); (X.C.); (Y.G.); (P.Z.); (X.Y.)
| | - Xingzai Chai
- Nanjing Institute of Future Energy System, Nanjing 211135, China; (J.L.); (X.C.); (Y.G.); (P.Z.); (X.Y.)
| | - Yunpeng Gu
- Nanjing Institute of Future Energy System, Nanjing 211135, China; (J.L.); (X.C.); (Y.G.); (P.Z.); (X.Y.)
| | - Pengyu Zhang
- Nanjing Institute of Future Energy System, Nanjing 211135, China; (J.L.); (X.C.); (Y.G.); (P.Z.); (X.Y.)
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Yang
- Nanjing Institute of Future Energy System, Nanjing 211135, China; (J.L.); (X.C.); (Y.G.); (P.Z.); (X.Y.)
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhui Wen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China;
| | - Zhao Xu
- North Night Vision Science & Technology (Nanjing) Research Institute Co., Ltd., Nanjing 211135, China; (Z.X.); (B.J.); (J.W.); (G.J.); (X.Q.)
| | - Bowen Jiang
- North Night Vision Science & Technology (Nanjing) Research Institute Co., Ltd., Nanjing 211135, China; (Z.X.); (B.J.); (J.W.); (G.J.); (X.Q.)
| | - Jian Wang
- North Night Vision Science & Technology (Nanjing) Research Institute Co., Ltd., Nanjing 211135, China; (Z.X.); (B.J.); (J.W.); (G.J.); (X.Q.)
| | - Ge Jin
- North Night Vision Science & Technology (Nanjing) Research Institute Co., Ltd., Nanjing 211135, China; (Z.X.); (B.J.); (J.W.); (G.J.); (X.Q.)
| | - Xiangbiao Qiu
- North Night Vision Science & Technology (Nanjing) Research Institute Co., Ltd., Nanjing 211135, China; (Z.X.); (B.J.); (J.W.); (G.J.); (X.Q.)
| | - Ting Zhang
- Nanjing Institute of Future Energy System, Nanjing 211135, China; (J.L.); (X.C.); (Y.G.); (P.Z.); (X.Y.)
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Light-Duty Gas Turbine, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
5
|
Zolfaghari S, Soltaninejad A, Okoro OV, Shavandi A, Denayer JFM, Sadeghi M, Karimi K. Starch biocomposites preparation by incorporating organosolv lignins from potato crop residues. Int J Biol Macromol 2024; 259:129140. [PMID: 38199558 DOI: 10.1016/j.ijbiomac.2023.129140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Plastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.9 wt% lignins with a recovery rate of 73.5 wt% achieved under optimum conditions at 180 °C with 50 % v/v ethanol. The extracted lignins were then incorporated into a starch matrix to create biocomposite films. ATR-FTIR analysis confirmed interactions between the starch matrix and extracted lignins, and XRD analysis showed the amorphous structure of lignins, reducing film crystallinity. The addition of 1 wt% of extracted lignins resulted in a 87 % reduction in oxygen permeability, a 25 % increase in the thermal stability of the film, and a 78 % enhancement in antioxidant. Furthermore, introducing 3 wt% lignins led to the lowest water vapor transmission rate, measuring 9.3 × 10-7 kg/s·m2. Morphological studies of the films demonstrated a homogeneous and continuous structure on both the surface and cross-sectional areas when the lignins content was below 7 wt%. These findings highlight the potential of using organosolv lignins derived from potato crop residues as a promising additive for developing eco-friendly films designed for sustainable food packaging.
Collapse
Affiliation(s)
- Shiva Zolfaghari
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Soltaninejad
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Morteza Sadeghi
- Department of Chemical Engineering, Ifsahan University of Technology, Isfahan 84156-83111, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
6
|
Colijn I, van der Kooij HM, Schroën K. From fundamental insights to rational (bio)polymer nanocomposite design - Connecting the nanometer to meter scale. Adv Colloid Interface Sci 2024; 324:103076. [PMID: 38301315 DOI: 10.1016/j.cis.2023.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
Nanoparticle addition has the potential to make bioplastic use mainstream, as the resultant nanocomposite shows improved mechanical, barrier, and thermal properties. It is well established that the architecture and dynamics of the nanoparticle-polymer interphasial region, ∼ 1.5-9 nm from the nanoparticle surface, are crucial for nanocomposite characteristics. Yet, how these molecular phenomena translate to the bulk is still largely unknown. A multi-disciplinary and multi-scale vision is required to capture the full picture and improve materials far beyond what is currently possible. In this review, a first step in bridging the apparent gap between fundamental insights toward observed material properties is made. At the molecular scale, the polymer chain density and dynamics at the nanoparticle surface are governed by a complex interplay between enthalpy and entropy. The resultant interphasial properties can only be propagated to the macroscopic scale effectively when the nanoparticles are well-distributed. This makes the dispersion state a key parameter for which thermodynamic and kinetic insights can be used to prevent nanoparticle aggregation. These insights are linked to material properties relevant to packaging. The outlook section elaborates on the remaining challenges and the steps required to further understand and better design nanocomposite systems.
Collapse
Affiliation(s)
- Ivanna Colijn
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Hanne M van der Kooij
- Wageningen University and Research, Physical Chemistry and Soft Matter Group, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Karin Schroën
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
7
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Cong C, Peng D, Liu Q, Yuan M, Meng X, Zhou Q. Effect of Graphene Oxide-Modified CaAl-Layered Double Hydroxides on the Carbon Dioxide Permeation Properties of Fluoroelastomers. Polymers (Basel) 2023; 15:4151. [PMID: 37896397 PMCID: PMC10610964 DOI: 10.3390/polym15204151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This work aimed to investigate the CO2 gas barrier and mechanical properties of fluorine rubber nanocomposites filled with Ca/Al layered hydroxide (graphene oxide [GO]/LDH-Ca2Al) modified by GO. GO/LDH-Ca2Al nanocomposite fillers were prepared by depositing Ca/Al layered hydroxide (LDH-Ca2Al) into the surface of alkalized GO (Al-GO). The prepared GO/LDH-Ca2Al nanocomposite fillers and complexes were characterized by Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for structural and micromorphological characterization. The results showed that GO/LDH-Ca2Al was successfully prepared with strong interactions between Al-GO and LDH, and the compatibility of GO/LDH-Ca2Al nanocomposite fillers with the polymer was significantly improved compared with that of LDH-Ca2Al. Consequently, both the fracture strength (σb) and strain (εb) of GO/LDH-Ca2Al nanocomplexes remarkably increased, and they exhibited excellent mechanical properties. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the thermal stability of GO/LDH-Ca2Al nanocomposite fillers, and GO/LDH-Ca2Al nanocomposite fillers have better thermal stability than LDH-Ca2Al. The reaction products (S-LDH-Ca2Al and S-GO-Ca2Al) of LDH-Ca2Al and GO/LDH-Ca2Al with CO2 were characterized using XRD and TGA, respectively, and the results show that LDH-Ca2Al reacts readily and chemically with CO2, resulting in a lower diffusion coefficient of CO2 in the LDH-Ca2Al nanocomplexes than that of the GO/LDH-Ca2Al nanocomplexes and leading to the destruction of the laminar structure of LDH-Ca2Al, while GO/LDH-Ca2Al has better CO2 resistance stability. GO/LDH-Ca2Al nanocomplexes exhibited a reduced content of hydroxyl groups with pro-CO2 nature exposed on the surface of LDH-Ca2Al, improving the interfacial interaction between the nanofillers and the rubber matrix and enhancing the dispersion of GO/LDH-Ca2Al in the polymers. Moreover, CO2 in the soluble GO/LDH-Ca2Al nanocomposites was significantly reduced, while the diffusion properties demonstrated weak temperature dependence on solubility. The mechanism of the CO2 gas barrier of polymers filled with GO/LDH-Ca2Al was proposed on the basis of the Arrhenius equation.
Collapse
Affiliation(s)
- Chuanbo Cong
- New Energy and Material College, China University of Petroleum, Beijing 102249, China; (D.P.); (Q.L.); (M.Y.); (X.M.); (Q.Z.)
| | | | | | | | | | | |
Collapse
|
9
|
Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023; 15:2972. [PMID: 37447617 DOI: 10.3390/polym15132972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.), poly-saccharide nanofillers (cellulose, starch, chitin, and chitosan nanomaterials), metal oxides (titanium dioxide, zinc oxide, zirconium oxide, etc.), and essential oils (carvacrol, eugenol, cinnamic acid). These reinforcements are frequently used to enhance several physical characteristics including mechanical properties, thermal stability, moisture resistance, oxygen barrier capabilities, and biodegradation rate, providing antimicrobial and antioxidant properties. This paper will provide an overview of the development of starch-based nanocomposite films and coatings applied in food packaging systems through the application of reinforcements and additives.
Collapse
Affiliation(s)
| | - Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
10
|
Las-Casas B, Arantes V. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. Int J Biol Macromol 2023:125057. [PMID: 37244346 DOI: 10.1016/j.ijbiomac.2023.125057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Cellulose nanofibrils (CNFs) have emerged as a potential alternative to synthetic polymers in packaging applications owing to their oxygen and grease barrier performance and mechanical properties. However, the performance of CNF films is dependent on the intrinsic characteristics of fibers, which are changed during CNF isolation. Understanding the variations in these characteristics during CNF isolation is crucial for tailoring CNF film properties to achieve optimum performance in packaging applications. In this study, CNFs were isolated by endoglucanase-assisted mechanical ultra-refining. The changes in the intrinsic characteristics of CNFs and their impact on CNF films were systematically investigated as functions of the degree of defibrillation, enzyme loading, and reaction time using the design of experiments. Enzyme loading had a significant effect on the crystallinity index, crystallite size, surface area, and viscosity. Meanwhile, the degree of defibrillation greatly influenced the aspect ratio, degree of polymerization, and particle size. CNF films prepared from CNFs isolated under two optimized scenarios (casting and coating applications) exhibited high thermal stability (approximately 300 °C), high tensile strength (104-113 MPa), high oil resistance (kit n°12), and low oxygen transmission rate (1.00-3.17 cc·m-2.day-1). Therefore, endoglucanase pretreatment can obtain CNFs at lower energy consumption, resulting in films with higher transmittance, higher barrier performance, and lower surface wettability than the control samples without enzymatic pretreatment and other unmodified net CNF films reported in the literature without intensive loss of mechanical and thermal performance.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, University of São Paulo - Lorena School of Engineering, Lorena, SP 12602-810, Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, University of São Paulo - Lorena School of Engineering, Lorena, SP 12602-810, Brazil.
| |
Collapse
|
11
|
Busu WNW, Yusof MJM, Bakar MSA, Akbar A, Chen RS, Shahdan D, Zailan FD, Ahmad S. Enhanced tensile and barrier properties of modified LLDPE with rubbery materials and graphene nanoplatelets for packaging application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Wan Nazri Wan Busu
- Food Science & Technology Research Center Malaysia Agricultural Research and Development Institute, MARDI, Persiaran MARDI‐UPM Serdang Malaysia
- Department of Applied Physics Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Muhammad Jefri Mohd Yusof
- Department of Health Science Faculty of Health and Life Sciences, Management & Science University, University Drive, Off Persiaran Olahraga Shah Alam Malaysia
| | - Mohammad Shafeq Abu Bakar
- Food Science & Technology Research Center Malaysia Agricultural Research and Development Institute, MARDI, Persiaran MARDI‐UPM Serdang Malaysia
| | - Adawiyah Akbar
- Food Science & Technology Research Center Malaysia Agricultural Research and Development Institute, MARDI, Persiaran MARDI‐UPM Serdang Malaysia
| | - Ruey Shan Chen
- Department of Applied Physics Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Dalila Shahdan
- Department of Applied Physics Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Farrah Diyana Zailan
- Department of Applied Physics Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Sahrim Ahmad
- Department of Applied Physics Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Malaysia
| |
Collapse
|
12
|
Zampino DC, Clarizia G, Bernardo P. Temperature Responsive Copolymers Films of Polyether and Bio-Based Polyamide Loaded with Imidazolium Ionic Liquids for Smart Packaging Applications. Polymers (Basel) 2023; 15:polym15051147. [PMID: 36904387 PMCID: PMC10006900 DOI: 10.3390/polym15051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Temperature-responsive materials are highly interesting for temperature-triggered applications such as drug delivery and smart packaging. Imidazolium Ionic Liquids (ILs), with a long side chain on the cation and a melting temperature of around 50 °C, were synthetized and loaded at moderate amounts (up to 20 wt%) within copolymers of polyether and a bio-based polyamide via solution casting. The resulting films were analyzed to assess their structural and thermal properties, and the gas permeation changes due to their temperature-responsive behavior. The splitting of FT-IR signals is evident, and, in the thermal analysis, a shift in the glass transition temperature (Tg) for the soft block in the host matrix towards higher values upon the addition of both ILs is also observed. The composite films show a temperature-dependent permeation with a step change corresponding to the solid-liquid phase change in the ILs. Thus, the prepared polymer gel/ILs composite membranes provide the possibility of modulating the transport properties of the polymer matrix simply by playing with temperature. The permeation of all the investigated gases obeys an Arrhenius-type law. A specific permeation behavior, depending on the heating-cooling cycle sequence, can be observed for carbon dioxide. The obtained results indicate the potential interest of the developed nanocomposites as CO2 valves for smart packaging applications.
Collapse
Affiliation(s)
- Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Gabriele Clarizia
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy
- Correspondence:
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|
13
|
Feng X, Hu X, Yu J, Zhao M, Yang F, Wang X, Zhang C, Weng Y, Han J. A Hydrotalcite-Based PET Composites with Enhanced Properties for Liquid Milk Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1857. [PMID: 36902978 PMCID: PMC10004223 DOI: 10.3390/ma16051857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
In the present work, the two-phase mixture (HTLc) of hydrotalcite and its oxide were used to improve the barrier properties, UV resistance and antimicrobial activity of Poly(ethylene terephthalate) (PET) for their application in liquid milk packaging. Firstly, CaZnAl-CO3-LDHs with a two-dimensional layered structure were synthesized by hydrothermal method. CaZnAl-CO3-LDHs precursors were characterized by XRD, TEM, ICP and dynamic light scattering. A series of PET/HTLc composite films were then prepared, characterized by XRD, FTIR and SEM, and a possible mechanism of the composite films with hydrotalcite was proposed. Barrier properties to water vapor and oxygen have been studied in PET nanocomposites, as well as their antibacterial efficacy by the colony technique and their mechanical properties after exposure to UV irradiation for 24 h. By the presence of 1.5 wt% HTLc in the PET composite film, the oxygen transmission rate (OTR) was reduced by 95.27%, the water vapor transmission rate was reduced by 72.58% and the inhibition against Staphylococcus aureus and Escherichia coli was 83.19% and 52.75%. Moreover, a simulation of the migration process in dairy products was used to prove the relative safety. This research first proposes a safe technique for fabricating hydrotalcite-based polymer composites with a high gas barrier, UV resistance and effective antibacterial activity.
Collapse
Affiliation(s)
- Xiangnan Feng
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaomeng Hu
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Yu
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhao
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fan Yang
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinrui Wang
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jingbin Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Ma Y, Zhao J, Wang Y, Pang B, Wu Y, Gao C. Poly(lactic acid) based Pearl Layer Moistureproof Membrane for Flexible Laminated Packaging. Macromol Rapid Commun 2023; 44:e2200868. [PMID: 36755508 DOI: 10.1002/marc.202200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/29/2023] [Indexed: 02/10/2023]
Abstract
The development of bio-based polymer materials, such as polylactic acid (PLA) -based polymers, is an effective strategy to reduce dependence on petrochemical-based polymers. However, the preparation of bio-based polymers with high barrier properties is a major challenge. To overcome this challenge, a nacreous layer structure with a ' brick and mud ' pattern is mimicked to improve the overall performance of the material. In this paper, Poly (L -lactic acid) (PLLA) and Polypropylene Glycol (PPG) was combined to prepare bio-based polyurethane (PU-PLLA), which is used as the slurry structure of nacreous layer. The bio-based biomimetic composite membrane (PU-PLLA/BN) is then obtained by adding boron nitride (BN, brick structure of pearl layer) to it. The water vapor permeability test results show that the permeability of PU-PLLA material can be reduced by more than 50% by 5 wt.% BN, which is because the addition of BN can increase the length and tortuosity of the gas molecular diffusion path in the composite. Therefore, this pearl-inspired PU-PLLA/BN film has excellent moisture resistance, which opens up a broad road for the practical application of PLLA in flexible laminated packaging.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingming Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanqing Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Pang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
15
|
Wang C, Ajji A. Development and application of low-density polyethylene-based multilayer film incorporating potassium permanganate and pumice for avocado preservation. Food Chem 2023; 401:134162. [DOI: 10.1016/j.foodchem.2022.134162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
|
16
|
Yang F, Chen G, Li J, Zhang C, Ma Z, Zhao M, Yang Y, Han Y, Huang Z, Weng Y. Effects of Quercetin and Organically Modified Montmorillonite on the Properties of Poly(butylene adipate-co-terephthalate)/Thermoplastic Starch Active Packaging Films. ACS OMEGA 2023; 8:663-672. [PMID: 36643425 PMCID: PMC9835550 DOI: 10.1021/acsomega.2c05836] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The poly(butylene adipate-co-terephthalate) (PBAT)/thermoplastic starch (TPS) film stands out owing to its acceptable price, low impact on the environment, and excellent mechanical properties. The main objective of this study was to improve the antioxidant properties of the PBAT/TPS film by incorporation of quercetin (Q) through the extrusion blow process. Another specific objective was to incorporate the organically modified montmorillonite (OMMT) to prolong the release of Q and improve the poor barrier properties of the PBAT/TPS/Q film. The films were analyzed in terms of their morphology, mechanical properties, gas and water barrier properties, and antioxidant and anti-UV properties. Optimization of the OMMT content resulted in a fiber-like, co-continuous morphology of the PBAT/TPS/Q film. The incorporation of quercetin enhanced the antioxidant and anti-UV properties of the PBAT/TPS film, while OMMT improved the mechanical properties, ultraviolet barriers, and gas and water barrier properties. The results show that the films incorporating Q and OMMT provided the oxygen and water barrier by up to 94 and 54%, respectively. Also, the amount of polymer required for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition is as low as 0.03 g, and the UV transmission rate was reduced by about 50%. Moreover, PBAT/TPS/Q/OMMT films successfully delayed the decay of the banana and blueberry due to their excellent antioxidant properties and suitable water vapor permeability.
Collapse
|
17
|
Starch-based food packaging films processed by reactive extrusion/thermo-molding using chromium octanoate-loaded zeolite A as a potential triple-action mesoporous material (reinforcing filler/food-grade antimicrobial organocatalytic nanoreactor). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Salahuddin Z, Ahmed M, Farrukh S, Ali A, Javed S, Hussain A, Younas M, Shakir S, Bokhari A, Ahmad S, Hanbazazah AS. Challenges and issues with the performance of boron nitride rooted membrane for gas separation. CHEMOSPHERE 2022; 308:136002. [PMID: 35973505 DOI: 10.1016/j.chemosphere.2022.136002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Various fillers such as zeolites, metal-organic framework, carbon, metal framework, graphene, and covalent organic framework have been incorporated into the polymers. However, these materials are facing issues such as incompatibility with the polymer matrix, which leads to the formation of non-selective voids and thus, reduces the gas separation properties. Recent studies show that hexagonal boron nitride (h-BN) possesses attractive characteristics such as high aspect ratio, good compatibility with polymer materials, enhanced gas barrier performance, and improved mechanical properties, which could make h-BN the potential candidate to replace conventional fillers. The synthesis of materials and membranes is the subject of this review, which focuses on recent developments and ongoing problems. Additionally, a summary of the mathematical models that were utilised to forecast how well polymer composites would perform in gas separation is provided. It was found in the previous studies that tortuosity is the governing factor for the determination of the effectiveness of a nanofiller as a gas barrier enhancer in polymer matrices. The shape of the nanofiller particles and sheets, disorientation and distribution of the nanofillers within the polymer matrix, state of aggregation and rate of reaggregation of the nanofiller particles, as well as the compatibility of the nanofiller with the polymer matrix all played a significant role in determining how well a particular nanofiller will perform in enhancing the gas barrier properties of the nanocomposites. For this purpose, this review has been focused not only on the experimentation work but also on the effect of tortuosity, exfoliation quality, compatibility, disorientation, and reaggregation of nanofillers.
Collapse
Affiliation(s)
- Zarrar Salahuddin
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Marghoob Ahmed
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sarah Farrukh
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Sofia Javed
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Arshad Hussain
- Department of Chemical and Energy Engineering, Faculty of Mechanical, Chemical, Materials and Mining Engineering, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology (PAF-IAST), Haripur, 22621, Hazara, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Younas
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, University Campus, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Sehar Shakir
- U.S.- Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H12, Islamabad, Pakistan
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan
| | - Sher Ahmad
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Cao Z, Kruczek B, Thibault J. Monte Carlo Simulations for the Estimation of the Effective Permeability of Mixed-Matrix Membranes. MEMBRANES 2022; 12:1053. [PMID: 36363607 PMCID: PMC9694028 DOI: 10.3390/membranes12111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent years have seen the explosive development of mixed-matrix membranes (MMMs) for a myriad of applications. In gas separation, it is desired to concurrently enhance the permeability, selectivity and physicochemical properties of the membrane. To help achieving these objectives, experimental characterization and predictive models can be used synergistically. In this investigation, a Monte Carlo (MC) algorithm is proposed to rapidly and accurately estimate the relative permeability of ideal MMMs over a wide range of conditions. The difference in diffusivity coefficients between the polymer matrix and the filler particle is used to adjust the random progression of the migrating species inside each phase. The solubility coefficients of both phases at the polymer−filler interface are used to control the migration of molecules from one phase to the other in a way to achieve progressively phase equilibrium at the interface. Results for various MMMs were compared with the results obtained with the finite difference method under identical conditions, where the results from the finite difference method are used in this investigation as the benchmark method to test the accuracy of the Monte Carlo algorithm. Results were found to be very accurate (in general, <1% error) over a wide range of polymer and filler characteristics. The MC algorithm is simple and swift to implement and provides an accurate estimation of the relative permeability of ideal MMMs. The MC method can easily be extended to investigate more readily non-ideal MMMs with particle agglomeration, interfacial void, polymer-chain rigidification and/or pore blockage, and MMMs with any filler geometry.
Collapse
|
21
|
Railian S, Fadil Y, Agarwal V, Junkers T, Zetterlund PB. Synthesis of electrically conducting nanocomposites via Pickering miniemulsion polymerization: Effect of graphene oxide functionalized with different capping agents. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Mehanathan S, Jaafar J, Nasir AM, Rahman RA, Ismail AF, Illias RM, Othman MHD, A Rahman M, Bilad MR, Naseer MN. Adsorptive Membrane for Boron Removal: Challenges and Future Prospects. MEMBRANES 2022; 12:798. [PMID: 36005713 PMCID: PMC9415005 DOI: 10.3390/membranes12080798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The complexity of removing boron compounds from aqueous systems has received serious attention among researchers and inventors in the water treating industry. This is due to the higher level of boron in the aquatic ecosystem, which is caused by the geochemical background and anthropogenic factors. The gradual increase in the distribution of boron for years can become extremely toxic to humans, terrestrial organisms and aquatic organisms. Numerous methods of removing boron that have been executed so far can be classified under batch adsorption, membrane-based processes and hybrid techniques. Conventional water treatments such as coagulation, sedimentation and filtration do not significantly remove boron, and special methods would have to be installed in order to remove boron from water resources. The blockage of membrane pores by pollutants in the available membrane technologies not only decreases their performance but can make the membranes prone to fouling. Therefore, the surface-modifying flexibility in adsorptive membranes can serve as an advantage to remove boron from water resources efficiently. These membranes are attractive because of the dual advantage of adsorption/filtration mechanisms. Hence, this review is devoted to discussing the capabilities of an adsorptive membrane in removing boron. This study will mainly highlight the issues of commercially available adsorptive membranes and the drawbacks of adsorbents incorporated in single-layered adsorptive membranes. The idea of layering adsorbents to form a highly adsorptive dual-layered membrane for boron removal will be proposed. The future prospects of boron removal in terms of the progress and utilization of adsorptive membranes along with recommendations for improving the techniques will also be discussed further.
Collapse
Affiliation(s)
- Shaymala Mehanathan
- Advanced Membrane Technology Research Center (AMTEC), Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Center (AMTEC), Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Atikah Mohd Nasir
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Roshanida A. Rahman
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Rosli Md Illias
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Center (AMTEC), Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Center (AMTEC), Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
23
|
Filler Models Revisited: Extension of the Nielson Model with Respect to the Geometric Arrangements of Fillers. Polymers (Basel) 2022; 14:polym14163327. [PMID: 36015585 PMCID: PMC9415666 DOI: 10.3390/polym14163327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Models describing how fillers affect the barrier properties of polymers remain an important research topic to improve applications such as hydrogen storage or food preservation. The Nielsen model, one of the earliest models for such predictions, is still one of the most widely used in the literature. However, it does not provide quantitative information on arrangements of fillers inside a polymer matrix, which is crucial for the definition of suitable filler distributions in barrier materials. Therefore, the channel model was developed in this work, which extends the Nielsen model by determining the relative distances between the fillers in regular filler arrangements in polymer matrices. This allows us to relate the permeation properties of filled polymer membranes to the geometric properties of the filler arrangement in simulations and experimental measurements. Simulations with geometries defined according to the channel model showed good agreement with the predictions of the Nielsen model. This demonstrated that the channel model can be a valuable tool for predicting at least mean geometric distances in studied polymer membranes. The validity range of the channel model was limited to a value range of the filler volume fraction 0.01≤ϕf≤0.5 based on theoretical considerations.
Collapse
|
24
|
Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Wen J, Cui Y, Huang D, Li Y, Yu X, Zhang X, Meng X, Zhou Q. Mechanical, rheological, and carbon dioxide barrier properties of polyvinylidene fluoride/
TiO
2
composites for flexible riser applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jihong Wen
- College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
| | - Yi Cui
- College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
| | - Dong Huang
- College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
| | - Yan Li
- Key Laboratory of Deepwater Engineering CNOOC Research Institute Co., Ltd Beijing China
| | - Xichong Yu
- Key Laboratory of Deepwater Engineering CNOOC Research Institute Co., Ltd Beijing China
| | - Xinpeng Zhang
- College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
| | - Xiaoyu Meng
- College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
| | - Qiong Zhou
- College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
| |
Collapse
|
26
|
Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage. ENERGIES 2022. [DOI: 10.3390/en15072663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluctuations in renewable energy production, especially from solar and wind plants, can be solved by large-scale energy storage. One of the possibilities is storing energy in the form of hydrogen or methane–hydrogen blends. A viable alternative for storing hydrogen in salt caverns is Lined Rock Cavern (LRC) underground energy storage. One of the most significant challenges in LRC for hydrogen storage is sealing liners, which need to have satisfactory sealing and mechanical properties. An experimental study of hydrogen permeability of different kinds of polymers was conducted, followed by modeling of hydrogen permeability of these materials with different additives (graphite, halloysite and fly ash). Fillers in polymers can have an impact on the hydrogen permeability ratio and reduce the amount of polymer required to make a sealing liner in the reservoir. Results of this study show that hydrogen permeability coefficients of polymers and estimated hydrogen leakage through these materials are similar to the results of salt rock after the salt creep process. During 60 days of hydrogen storage in a tank of 1000 m2 inner surface, 1 cm thick sealing liner and gas pressure of 1.0 MPa, only approx. 1 m3 STP of hydrogen will diffuse from the reservoir. The study also carries out the modeling of the hydrogen permeability of materials, using the Maxwell model. The difference between experimental and model results is up to 17%, compared to the differences exceeding 30% in some other studies.
Collapse
|
27
|
Rincón-Iglesias M, Salado M, Lanceros-Mendez S, Lizundia E. Magnetically active nanocomposites based on biodegradable polylactide, polycaprolactone, polybutylene succinate and polybutylene adipate terephthalate. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Chavan P, Sinhmar A, Sharma S, Dufresne A, Thory R, Kaur M, Sandhu KS, Nehra M, Nain V. Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. STARCH-STARKE 2022. [DOI: 10.1002/star.202100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Somesh Sharma
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2 Grenoble F‐38000 France
| | - Rahul Thory
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Manju Nehra
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Vikash Nain
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| |
Collapse
|
29
|
Filler Influence on H2 Permeation Properties in Sulfur-CrossLinked Ethylene Propylene Diene Monomer Polymers Blended with Different Concentrations of Carbon Black and Silica Fillers. Polymers (Basel) 2022; 14:polym14030592. [PMID: 35160581 PMCID: PMC8839649 DOI: 10.3390/polym14030592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
Filler effects on H2 permeation properties in sulfur-crosslinked ethylene propylene diene monomer (EPDM) polymers blended with two kinds of carbon black (CB) and silica fillers at different contents of 20 phr–60 phr are investigated by employing volumetric analysis in the pressure exposure range of 1.2 MPa~9.0 MPa. A linear relationship is observed between the sorbed amount and pressure for H2 gas, which is indicative of Henry’s law behavior. The hydrogen solubility of EPDM composites increases linearly with increasing filler content. The magnitude of hydrogen solubility for the filled EPDM composites is dependent on the filler type. The hydrogen solubility is divided into two contributions: hydrogen absorption in the EPDM polymer and hydrogen adsorption at the filler surface. Neat EPDM reveals pressure-dependent bulk diffusion behavior. However, with increasing filler content, the diffusivity for the filled EPDM composites is found to be independent of pressure. The magnitude of filler effects on the hydrogen permeation parameter is measured in the order of high abrasion furnace CB~semireinforcing furnace CB ˃ silica, whose effect is related to the specific surface area of CB particles and interfacial structure. The correlation between the permeation parameters and filler content (or crosslink density) is discussed.
Collapse
|
30
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Wu H, Kruczek B, Thibault J. A generalized model for the prediction of the permeability of mixed-matrix membranes using impermeable fillers of diverse geometry. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Xiao Y, Lei X, Xue S, Lian R, Xiong G, Xin X, Wang D, Zhang Q. Mechanically Strong, Thermally Stable Gas Barrier Polyimide Membranes Derived from Carbon Nanotube-Based Nanofluids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56530-56543. [PMID: 34758621 DOI: 10.1021/acsami.1c15018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas barrier membranes with impressive moisture permeability are highly demanded in air or nature gas dehumidification. We report a novel approach using polyetheramine oligomers covalently grafted on the carbon nanotubes (CNTs) to engineer liquid-like CNT nanofluids (CNT NFs), which are incorporated into a polyimide matrix to enhance the gas barrier and moisture permeation properties. Benefiting from the featured liquid-like characteristic of CNT NFs, a strong interfacial compatibility between CNTs and the polyimide matrix is achieved, and thus, the resulting membranes exhibit high heat resistance and desirable mechanical strength as well as remarkable fracture toughness, beneficially to withstanding creep, impact, and stress fatigue in separation applications. Positron annihilation lifetime spectroscopy measurements indicate a significant decrease in fractional free volume within the resulting membranes, leading to greatly enhanced gas barrier properties while almost showing full retention of moisture permeability compared to that of the pristine membrane. For membranes with 10 wt % CNT NFs, the gas transmission rates, respectively, decrease 99.9% for CH4, 94.4% for CO2, 99.2% for N2, and 97.9% for O2 compared with that of the pristine membrane. Most importantly, with the increasing amount of CNT NFs, the hybrid membranes demonstrate a simultaneous increase of barrier performance and permselectivity for H2O/CH4, H2O/N2, H2O/CO2, and H2O/O2. All these results make these membranes potential candidates for high-pressure natural gas or hyperthermal air dehydration.
Collapse
Affiliation(s)
- Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
33
|
Gas diffusion in polymer nanocomposites: Role of defects and caves in fillers. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Increasing the Gas Barrier Properties of Polyethylene Foils by Coating with Poly(methyl acrylate)-Grafted Montmorillonite Nanosheets. Polymers (Basel) 2021; 13:polym13193228. [PMID: 34641044 PMCID: PMC8512092 DOI: 10.3390/polym13193228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Low-density polyethylene (LDPE) foils were coated with a thin film of polymer-grafted Montmorillonite (MMT) nanosheets, which form a barrier against gas diffusion due to their unique brick-and-mortar arrangement. The MMT nanosheets were grafted with poly(methyl acrylate) (PMA), a soft and flexible polymer. Already very thin films of this nanocomposite could reduce gas permeability significantly. The impact of the topology of the surface-grafted polymer on gas permeability was also studied. It was found that grafting MMT nanosheets with a mixture of star-shaped and linear PMA and with PMA that is cross-linked via hydrogen bonds further decrease gas permeability. The presented strategy is quick and simple and allows for the easy formation of effective gas barrier coatings for LDPE foils, as used in food packaging.
Collapse
|
35
|
Kabeb SM, Hassan A, Ahmad F, Mohamad Z, Sharer Z, Mokhtar M. Synergistic effects of hybrid nanofillers on graphene oxide reinforced epoxy coating on corrosion resistance and fire retardancy. J Appl Polym Sci 2021. [DOI: 10.1002/app.51640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Siti Maznah Kabeb
- Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Malaysia
| | - Azman Hassan
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Faiz Ahmad
- Department of Mechanical Engineering Universiti Teknologi Petronas Perak Malaysia
| | - Zurina Mohamad
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Zalilah Sharer
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Munirah Mokhtar
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| |
Collapse
|
36
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Pardo S, Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers (Basel) 2021; 13:2998. [PMID: 34503038 PMCID: PMC8434030 DOI: 10.3390/polym13172998] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, polymer nanocomposites produced by combining nanofillers and a polymeric matrix are emerging as interesting materials. Polymeric composites have a wide range of applications due to the outstanding and enhanced properties that are obtained thanks to the introduction of nanoparticles. Therefore, understanding the filler-matrix relationship is an important factor in the continued growth of this scientific area and the development of new materials with desired properties and specific applications. Due to their performance in response to a magnetic field magnetic nanocomposites represent an important class of functional nanocomposites. Due to their properties, magnetic nanocomposites have found numerous applications in biomedical applications such as drug delivery, theranostics, etc. This article aims to provide an overview of the filler-polymeric matrix relationship, with a special focus on magnetic nanocomposites and their potential applications in the biomedical field.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Samantha Pardo
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| | - Emilio Bucio
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| |
Collapse
|
37
|
Polycarbonate/mica extrusion using mixing elements: Improvement of transparency and thermal, mechanical and water and gas barrier properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Nascimento ES, Barros MO, Cerqueira MA, Lima HL, Borges MDF, Pastrana LM, Gama FM, Rosa MF, Azeredo HM, Gonçalves C. All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Issa S, Cousin F, Bonnevide M, Gigmes D, Jestin J, Phan TNT. Poly(ethylene oxide) grafted silica nanoparticles: efficient routes of synthesis with associated colloidal stability. SOFT MATTER 2021; 17:6552-6565. [PMID: 34151921 DOI: 10.1039/d1sm00678a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, poly(ethylene oxide) monomethyl ether (MPEO) of molecular weight of 5000, 10 000, and 20 000 g mol-1 were grafted onto colloidal silica nanoparticles (NPs) of a 27.6 nm diameter using two distinct "grafting to" processes. The first method was based on the coupling reaction of epoxide-end capped MPEO with amine-functionalized silica NPs, while the second method was based on the condensation of triethoxysilane-terminated MPEO onto the unmodified silica NPs. The influence of PEO molecular weight, grafting process and grafting conditions (temperature, reactant concentration, reaction time) on the PEO grafting density was fully investigated. Thermogravimetric analysis (TGA) was used to determine the grafting density which ranged from 0.12 chains per nm2 using the first approach to 1.02 chains per nm2 when using the second approach. 29Si CP/MAS NMR characterization indirectly revealed that above a grafting density value of 0.3 PEO chains per nm2, a dendri-graft PEO network was built around the silica surface which was composed of PEO chains directly anchored to the silica surface and those grafted to silica NPs by intermediate of >CH-O-Si- bonds. The colloidal stability of the particles during different steps of the grafting process was characterized by small-angle X-ray scattering (SAXS). We have found that the colloidal systems are stable whatever the achieved grafting density due to the strong repulsions between the NPs, with the strength of repulsion increasing with the molecular weight of the grafted MPEO chains.
Collapse
Affiliation(s)
- Sébastien Issa
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273-Campus Scientifique St Jérôme, Service 542, 13397 Marseille Cedex 20, France.
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, UMR 12, Université Paris-Saclay, IRAMIS/CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Marine Bonnevide
- Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, F-63 040 Clermont-Ferrand, Cedex 9, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273-Campus Scientifique St Jérôme, Service 542, 13397 Marseille Cedex 20, France.
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR 12, Université Paris-Saclay, IRAMIS/CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Trang N T Phan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273-Campus Scientifique St Jérôme, Service 542, 13397 Marseille Cedex 20, France.
| |
Collapse
|
40
|
Employing Nanosilver, Nanocopper, and Nanoclays in Food Packaging Production: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11050509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, there has been an increasing demand for “ready-to-cook” and “ready-to-eat” foods, encouraging food producers, food suppliers, and food scientists to package foods with minimal processing and loss of nutrients during food processing. Following the increasing trend in the customer’s demands for minimally processed foodstuffs, this underscores the importance of promising interests toward industrial applications of novel and practical approaches in food. Along with substantial progress in the emergence of “nanoscience”, which has turned into the call of the century, the efficacy of conventional packaging has faded away. Accordingly, there is a wide range of new types of packaging, including electronic packaging machines, flexible packaging, sterile packaging, metal containers, aluminum foil, and flexographic printing. Hence, it has been demonstrated that these novel approaches can economically improve food safety and quality, decrease the microbial load of foodborne pathogens, and reduce food spoilage. This review study provides a comprehensive overview of the most common chemical or natural nanocomposites used in food packaging that can extend food shelf life, safety and quality. Finally, we discuss applying materials in the production of active and intelligent food packaging nanocomposite, synthesis of nanomaterial, and their effects on human health.
Collapse
|
41
|
Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating-Effect of the Base Paper and Nanoclay. Polymers (Basel) 2021; 13:polym13081334. [PMID: 33921733 PMCID: PMC8072764 DOI: 10.3390/polym13081334] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
The poor barrier properties and hygroscopic nature of cellulosic paper impede the wide application of cellulosic paper as a packaging material. Herein, a polyvinyl alcohol (PVA)-based polymer coating was used to improve the barrier performance of paper through its good ability to form a film. Alkyl ketene dimer (AKD) was used to enhance the water resistance. The effect of the absorptive characteristics of the base paper on the barrier properties was explored, and it was shown that surface-sized base paper provides a better barrier performance than unsized base paper. Nanoclay (Cloisite Na+) was used in the coating formulation to further enhance the barrier performance. The results show that the coating of PVA/AKD/nanoclay dispersion noticeably improved the barrier performance of the paper. The water vapor transmission rate of the base paper was 533 g/m2·day, and it decreased sharply to 1.3 g/m2·day after the application of a double coating because of the complete coverage of the base paper by the PVA-based polymer coating. The coated paper had excellent water resistance owing to its high water contact angle of around 100°. The grease resistance and mechanical properties of the base paper also improved after coating. This work may provide inspiration for improving the barrier properties of packaging paper through the selection of a suitable base paper and coating formulation.
Collapse
|
42
|
Liu AY, Emamy H, Douglas JF, Starr FW. Effects of Chain Length on the Structure and Dynamics of Semidilute Nanoparticle–Polymer Composites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ari Y. Liu
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Hamed Emamy
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
43
|
Gültner M, Boldt R, Formanek P, Fischer D, Simon F, Pötschke P. The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component. Molecules 2021; 26:molecules26051312. [PMID: 33804444 PMCID: PMC7957507 DOI: 10.3390/molecules26051312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.
Collapse
|
44
|
Affiliation(s)
- Nor Fasihah Zaaba
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hanafi Ismail
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Alaa Muhsin Saeed
- Iraqi Ministry of Sciences and Technology, Center of Advanced Materials Research, Al-Jadriyah, Baghdad, Iraq
| |
Collapse
|
45
|
Phulkerd P, Yamazaki A, Iwasaki S, Yamaguchi M. Effect of molecular weight on molecular orientation and morphology of polypropylene sheets containing a β‐nucleating agent. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Panitha Phulkerd
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| | - Atsuro Yamazaki
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| | - Shohei Iwasaki
- Performance Chemicals Division New Japan Chemical Co., Ltd. Kyoto Japan
| | - Masayuki Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa Japan
| |
Collapse
|
46
|
Lisuzzo L, Caruso MR, Cavallaro G, Milioto S, Lazzara G. Hydroxypropyl Cellulose Films Filled with Halloysite Nanotubes/Wax Hybrid Microspheres. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05148] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
| | - Maria Rita Caruso
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| |
Collapse
|
47
|
Corrado I, Abdalrazeq M, Pezzella C, Di Girolamo R, Porta R, Sannia G, Giosafatto CVL. Design and characterization of poly (3-hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and their grafting in whey protein-based nanocomposites. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Blevins AK, Cox LM, Hu L, Drisko JA, Lin H, Bowman CN, Killgore JP, Ding Y. Spatially Controlled Permeability and Stiffness in Photopatterned Two-Stage Reactive Polymer Films for Enhanced CO2 Barrier and Mechanical Toughness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adrienne K. Blevins
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| | - Lewis M. Cox
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, Montana 59715, United States
| | - Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | | | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christopher N. Bowman
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| | | | - Yifu Ding
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
49
|
Gas Permeation Model of Mixed-Matrix Membranes with Embedded Impermeable Cuboid Nanoparticles. MEMBRANES 2020; 10:membranes10120422. [PMID: 33333861 PMCID: PMC7765331 DOI: 10.3390/membranes10120422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/24/2022]
Abstract
In the packaging industry, the barrier property of packaging materials is of paramount importance. The enhancement of barrier properties of materials can be achieved by adding impermeable nanoparticles into thin polymeric films, known as mixed-matrix membranes (MMMs). Three-dimensional numerical simulations were performed to study the barrier property of these MMMs and to estimate the effective membrane gas permeability. Results show that horizontally-aligned thin cuboid nanoparticles offer far superior barrier properties than spherical nanoparticles for an identical solid volume fraction. Maxwell’s model predicts very well the relative permeability of spherical and cubic nanoparticles over a wide range of the solid volume fraction. However, Maxwell’s model shows an increasingly poor prediction of the relative permeability of MMM as the aspect ratio of cuboid nanoparticles tends to zero or infinity. An artificial neural network (ANN) model was developed successfully to predict the relative permeability of MMMs as a function of the relative thickness and the relative projected area of the embedded nanoparticles. However, since an ANN model does not provide an explicit form of the relation of the relative permeability with the physical characteristics of the MMM, a new model based on multivariable regression analysis is introduced to represent the relative permeability in a MMM with impermeable cuboid nanoparticles. The new model possesses a simple explicit form and can predict, very well, the relative permeability over an extensive range of the solid volume fraction and aspect ratio, compared with many existing models.
Collapse
|
50
|
Besharat F, Manteghian M, Russo F, Galiano F, Figoli A, Abdollahi M, Lazzeri A. Investigation of electric field‐aligned edge‐oxidized graphene oxide nanoplatelets in polyethersulfone matrix in terms of pure water permeation and dye rejection. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Farzaneh Besharat
- Nanotechnology Group, Engineering Faculty Tarbiat Modares University Tehran Iran
| | | | | | | | | | - Mahdi Abdollahi
- Polymer Reactions Engineering Department, Chemical Engineering Faculty Tarbiat Modares University Tehran Iran
| | - Andrea Lazzeri
- Civil Engineering and Industrial Department University of Pisa Pisa Italy
| |
Collapse
|