1
|
Altaf C, Colak TO, Karagoz E, Kurt M, Sankir ND, Sankir M. A Review of the Recent Advances in Composite Membranes for Hydrogen Generation Technologies. ACS OMEGA 2024; 9:23138-23154. [PMID: 38854521 PMCID: PMC11154723 DOI: 10.1021/acsomega.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Keeping global warming at 2 degrees and below as stated in the "Paris Climate Agreement" and minimizing emissions can only be achieved by establishing a hydrogen (H2) ecosystem. Therefore, H2 technologies stand out in terms of accomplishing zero net emissions. Although H2 is the most abundant element in the known universe, molecular H2 is very rare in nature and must be produced. In H2 production, reforming natural gas and renewable hydrogen processes using electrolyzers comes to the fore. The key to all these technologies is to enhance production speed, performance, and system lifetime. At this point, composite membranes used in both processes come to the fore. This review article summarizes composite membrane technologies used in methane, ethanol, and biomass steam reforming processes, proton exchange membranes, alkaline water electrolysis, and hybrid sulfur cycle. In addition to these common H2 production technologies at large quantities, the innovative systems developed with solar energy integration for H2 generation were linked to composite membrane utilization. This study aimed to draw attention to the importance of composite membranes in H2 production. It aims to prepare a guiding summary for those working on membranes by combining the latest and cutting-edge studies on this subject.
Collapse
Affiliation(s)
- Cigdem
Tuc Altaf
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Emine Karagoz
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Mehmet Kurt
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Nurdan Demirci Sankir
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Mehmet Sankir
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| |
Collapse
|
2
|
Saeidi S, Sápi A, Khoja AH, Najari S, Ayesha M, Kónya Z, Asare-Bediako BB, Tatarczuk A, Hessel V, Keil FJ, Rodrigues AE. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2023; 183:113392. [DOI: 10.1016/j.rser.2023.113392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
3
|
Lee EH, Kim TW, Byun S, Seo DW, Hwang HJ, Yoon HC, Kim H, Ryi SK. Effect of air bubbling on electroless Pd plating for the practical application of hydrogen selective membranes. RSC Adv 2023; 13:14281-14290. [PMID: 37180008 PMCID: PMC10170241 DOI: 10.1039/d3ra01596c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, an air bubbling electroless plating (ELP) method was newly developed for the production of Pd composite membranes. The air bubble ELP alleviated the concentration polarization of Pd ions, making it possible to achieve a plating yield of 99.9% in 1 h and form very fine Pd grains with a uniform layer of ∼4.7 μm. A membrane with a diameter of 25.4 mm and a length of 450 mm was produced by the air bubbling ELP, achieving a hydrogen permeation flux of 4.0 × 10-1 mol m-2 s-1 and selectivity of ∼10 000 at 723 K with a pressure difference of 100 kPa. To confirm the reproducibility, six membranes were produced by the same method and assembled in a membrane reactor module to produce high-purity hydrogen by ammonia decomposition. Hydrogen permeation flux and selectivity of the six membranes at 723 K with a pressure difference of 100 kPa were 3.6 × 10-1 mol m-2 s-1 and ∼8900, respectively. An ammonia decomposition test with an ammonia feed rate of 12 000 mL min-1 showed that the membrane reactor produced hydrogen with >99.999% purity and a production rate of 1.01 Nm3 h-1 at 748 K with a retentate stream gauge pressure of 150 kPa and a permeation stream vacuum of -10 kPa. The ammonia decomposition tests confirmed that the newly developed air bubbling ELP method affords several advantages, such as rapid production, high ELP efficiency, reproducibility, and practical applicability.
Collapse
Affiliation(s)
- Eun-Han Lee
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
- Department of Chemical and Biological Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-2123-5753
| | - Tae-Woo Kim
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
- Department of Chemical and Biological Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-2123-5753
| | - Segi Byun
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| | - Doo-Won Seo
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| | - Hyo-Jung Hwang
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| | - Hyung-Chul Yoon
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Hansung Kim
- Department of Chemical and Biological Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-2123-5753
| | - Shin-Kun Ryi
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| |
Collapse
|
4
|
Chen X, Wang J, Yu N, Wang Y, Zhang D, Ni M, Chen F, Liu T, Ding M. A robust direct-propane solid oxide fuel cell with hierarchically oriented full ceramic anode consisting with in-situ exsolved metallic nano-catalysts. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Escalante Y, Tarditi AM. Thermally stable membranes based on PdNiAu systems with high nickel content for hydrogen separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Effect of annealing process on the hydrogen permeation through Pd–Ru membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wang ZQ, Wang H. Fabrication of Cocatalyst NiO-Modified BiVO4 Composites for Enhanced Photoelectrochemical Performances. Front Chem 2022; 10:864143. [PMID: 35720991 PMCID: PMC9201206 DOI: 10.3389/fchem.2022.864143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, NiO modified BiVO4 (BiVO4/NiO) nanocomposite was synthesized using hydrothermal and calcination method. The composite of BiVO4/NiO, further employed as a low-overpotential photoanode, was consisted of BiVO4 nanoparticles and NiO nanosheets, in which the BiVO4 nanoelectrode served as the matrix for the attachment of NiO nanosheets. Photoelectrochemical (PEC) tests show that BiVO4/NiO displayed improved PEC performance compared with pure BiVO4. The BiVO4/NiO photoanode delivers a photocurrent density of 1.2 mA/cm2 at 1.23 V vs. RHE in a Na2SO4 electrolyte under an AM 1.5G solar simulator, which is 0.3 mA/cm2 higher than pure BiVO4 photoanode. Meanwhile, the onset potential also generates a 350 mV cathodic shift. The enhanced performance of the BiVO4/NiO nanocomposite is attributed to NiO unique lamellar structure capable of providing a large number of active sites. Measurements of electrochemical impedance spectra (EIS) and the incident photon-to-current efficiency (IPCE) illustrate that the enhanced PEC activities are ascribed to the improved charge carrier separation/transport and the promoted water oxidation kinetics furnished by the decoration of NiO cocatalyst.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, China
- *Correspondence: Zhi-Qiang Wang,
| | - HongJun Wang
- School of Materials Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
8
|
Olive Mill Wastewater Valorization through Steam Reforming Using Multifunctional Reactors: Challenges of the Process Intensification. ENERGIES 2022. [DOI: 10.3390/en15030920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Olive oil mill wastewater (OMW) is a polluting stream derived from the production of olive oil and is a source of environmental pollution; this is relevant in many countries around the world, but particularly in all the Mediterranean region where major producers are located. In this effluent, several pollutants are present—namely, sugars, fatty acids, and polyphenols, among others. Nowadays, to reduce the pollutant load, several treatment techniques are applied, but these technologies have numerous cost and efficiency problems. For this reason, the steam reforming of the OMW (OMWSR) presents as a good alternative, because this process decreases the pollutant load of the OMW and simultaneously valorizes the waste with the production of green H2, which is consistent with the perspective of the circular economy. Currently, the OMWSR is an innovative treatment alternative in the scientific field and with high potential. In the last few years, some groups have studied the OMWSR and used innovative reactor configurations, aiming to improve the process’ effectiveness. In this review, the OMW treatment/valorization processes, the last developments on catalysis for OMWSR (or steam reforming of similar species present in the effluent), as well as the last advances on OMWSR performed in multi-functional reactors are addressed.
Collapse
|
9
|
Angulo M, Agirre I, Arratibel A, Llosa Tanco MA, Pacheco Tanaka DA, Barrio VL. Pore flow-through catalytic membrane reactor for steam methane reforming: characterization and performance. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00571e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new reactor configuration with low Pd loadings allows good methane conversion results at low temperatures.
Collapse
Affiliation(s)
- M. Angulo
- Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - I. Agirre
- Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - A. Arratibel
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - M. A. Llosa Tanco
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - D. A. Pacheco Tanaka
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - V. L. Barrio
- Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
10
|
Applicability of membrane reactor technology in industrial hydrogen producing reactions: Current effort and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Alrashed F, Zahid U. Comparative analysis of conventional steam methane reforming and PdAu membrane reactor for the hydrogen production. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Do HY, Kim CH, Han JY, Kim HS, Ryi SK. Low-temperature proton-exchange membrane fuel cell-grade hydrogen production by membrane reformer equipped with Pd-composite membrane and methanation catalyst on permeation stream. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Lee H, Lee B, Byun M, Lim H. Comparative techno-economic analysis for steam methane reforming in a sorption-enhanced membrane reactor: Simultaneous H2 production and CO2 capture. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Li C, He Z, Ban X, Li N, Chen C, Zhan Z. Membrane-based catalytic partial oxidation of ethanol coupled with steam reforming for solid oxide fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
|
16
|
Cheng H, Wang X, Meng X, Meng B, Sunarso J, Tan X, Liu L, Liu S. Dual-layer BaCe0.8Y0.2O3-δ-Ce0.8Y0.2O2-δ/BaCe0.8Y0.2O3-δ-Ni hollow fiber membranes for H2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Stohr T, Fischer A, Muench F, Antoni M, Wollstadt S, Lohaus C, Kunz U, Clemens O, Klein A, Ensinger W. Electroless Nanoplating of Pd−Pt Alloy Nanotube Networks: Catalysts with Full Compositional Control for the Methanol Oxidation Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tobias Stohr
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Angelina Fischer
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Falk Muench
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Markus Antoni
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Stephan Wollstadt
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Christian Lohaus
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Ulrike Kunz
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Oliver Clemens
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Andreas Klein
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Wolfgang Ensinger
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| |
Collapse
|
18
|
|
19
|
|