1
|
Sun Z, Yin Z, Zhang M, Guo D, Ran F. Poloxamer 407 Combined with Polyvinylpyrrolidone To Prepare a High-Performance Poly(ether sulfone) Ultrafiltration Membrane. ACS OMEGA 2023; 8:39783-39795. [PMID: 37901513 PMCID: PMC10600910 DOI: 10.1021/acsomega.3c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
At present, the design and fabrication of polymer membranes with high permeability and good retention ability are still huge challenges. In this study, the commercial Poloxamer 407 (Pluronic F127) is selected as a multifunctional additive, and polyvinylpyrrolidone is used as a pore-forming agent to modify the poly(ether sulfone) membrane by liquid-liquid phase conversion technology to prepare an ultrafiltration membrane with excellent performance. The hydrophobic poly(propylene oxide) segment in Poloxamer 407 guarantees that this copolymer can be firmly anchored to the poly(ether sulfone) matrix, and the hydrophilic poly(ethylene oxide) segments in Poloxamer 407 impart a stronger hydrophilic nature to the modified membrane surface. Therefore, the permeability and hydrophilicity of the modified membrane are significantly improved and the modified membrane also has good stability. When the amount of Poloxamer 407 added to the casting solution reached 0.6 g, the water flux of the modified membrane was as high as 368 L m-2 h-1, and the rejection rate of bovine serum albumin was close to 98%. In the test to isolate organic small molecule dyes, the retention rate of the modified membrane to Congo red is 94.27%. In addition, the modified membrane shows an excellent water flux recovery rate and antifouling ability. It performs well in subsequent cycle tests and long-term membrane life tests and can be used repeatedly. Our work has resulted in poly(ether sulfone) membranes with good performance, which show great potential in the treatment of biomedical wastewater and the removal of industrial organic dye wastewater, it provides ideas for the development and application of amphiphilic polymer materials.
Collapse
Affiliation(s)
- Zhijiang Sun
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zehua Yin
- Jiangsu
Solicitude Medical Technology co., Ltd., Suzhou 215100, PR China
| | - Mingyu Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Dongli Guo
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
- Jiangsu
Solicitude Medical Technology co., Ltd., Suzhou 215100, PR China
| | - Fen Ran
- State
Key Laboratory of Advanced Processing and Recycling of Non-ferrous
Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
2
|
Dong S, Hua H, Wu X, Mao X, Li N, Zhang X, Wang K, Yang S. In-situ photoreduction strategy for synthesis of silver nanoparticle-loaded PVDF ultrafiltration membrane with high antibacterial performance and stability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26445-26457. [PMID: 36369440 DOI: 10.1007/s11356-022-24052-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Ultrafiltration (UF) technology using polyvinylidene fluoride (PVDF) membrane has been widely applied to water and wastewater treatment due to its low cost and simple operation process. However, PVDF-based UF membrane always encountered the issue of membrane biofouling that greatly impacted the filtration performance. In this study, we prepare a silver nanoparticle (AgNP)-loaded PVDF (Ag/PVDF) UF membrane by an in-situ photoreduction method to mitigate the membrane biofouling. Different from the previously reported method, AgNPs were synthesized in-situ by a UV photoreduction process, in which Ag+ ions were reduced to zero-valent Ag nanoparticles by the photo-induced reducing radicals. Antibacterial experiments showed that the inhibition efficiency of Ag/PVDF membrane to Escherichia coli reached up to ~ 99% after antibacterial treatment for 24 h. In comparison with the pristine PVDF membrane, Ag/PVDF membrane possessed a lower water contact angle (83.7° vs. 38.1°), and its pure water flux increased by 23.7%, and a high bovine serum albumin (BSA) rejection efficiency was maintained. In addition, the high stability of the Ag/PVDF composite membrane was confirmed by the extremely low releasing amount of Ag. This study provides a novel strategy for the preparation of metal nanoparticle-incorporated Ag/PVDF ultrafiltration composite membrane showing favorable antibacterial performance and stability.
Collapse
Affiliation(s)
- Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Helin Hua
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Xin Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xuhui Mao
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Na Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xinping Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Kun Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shengyun Yang
- Guangdong Weiqing Environmental Engineering Company, Zhongshan, 528437, China
| |
Collapse
|
3
|
Niu X, Chen Y, Hu H. Cross-Linked Networks of 1,6-Hexanedithiol with Gold Nanoparticles to Improve Permeation Flux of Polyethersulfone Membrane. MEMBRANES 2022; 12:1207. [PMID: 36557114 PMCID: PMC9781281 DOI: 10.3390/membranes12121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
It is a great challenge to design and prepare polymeric membranes with excellent permeability and good rejection. In this study, a modifier of gold nanoparticles for crosslinking and self-assembly by 1,6-hexanedithiol is fabricated and used to modify the polyethersulfone membrane as an additive, which forms a uniform porous membrane by liquid-liquid phase conversion technology. The morphology of the membrane is investigated by scanning electron microscopy (SEM), the change of the hydrophilicity of the membrane surface after modification is measured by the contact angle goniometer, and the performance of the fabricated membrane is measured by evaluating the pure water flux and the rejection ratio of bovine serum albumin. The results indicate that the permeability of the modified membrane has a significant improvement. When the mass fraction of the modifying agent is 5 wt%, the water flux of the modified membrane reaches up to 131.6 L m-2 h-1, and has a good rejection ratio to bovine serum albumin. In short, this work plays an important role in improving the flux of the membrane and maintaining good separation performance.
Collapse
Affiliation(s)
- Xiaoqin Niu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Yuhong Chen
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haobin Hu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China
| |
Collapse
|
4
|
Zheng H, Zhu M, Wang D, Zhou Y, Sun X, Jiang S, Li M, Xiao C, Zhang D, Zhang L. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Wang T, Jin Y, Mu T, Wang T, Yang J. Tröger's base polymer blended with poly(ether ketone cardo) for high temperature proton exchange membrane fuel cell applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Li Y, Qi Q, Shan S, Yao Z, Liu F, Zhu B. The stabilization of ultrafiltration membrane blended with randomly structured amphiphilic copolymer: Micropollutants adsorption properties in filtration processes. J Colloid Interface Sci 2022; 613:234-243. [PMID: 35042024 DOI: 10.1016/j.jcis.2022.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
In this study, a blend membrane consisting of polyvinylidene fluoride (PVDF) and tertiary amine containing random copolymer poly(methyl methacrylate-r-dimethylamino-2-ethyl methacrylate) (P(MMA-r-DMAEMA)) was fabricated and utilized as an adsorptive membrane for micropollutants (anionic dye and heavy metal ions) removal from aqueous solutions. Cross-linking the random copolymer by p-xylylene dichloride (XDC) produced the membrane with improved copolymer retention ratio and stability, while slightly variated physicochemical properties. Besides, the fluxes of crosslinked blend membranes dramatically increased from 0.7 ± 0.1 L/(m2h) to 118.6 ± 5.9 L/(m2h). Then the present blend membrane was carried out adsorption and filtration experiments to investigate the influence of various of operation parameters including initial solution pH value, contacting time, initial solution concentration, and recycling efficiency on micropollutants removal. The experimental results showed that the removal of the anionic dyes and heavy metal ions on this tertiary amine containing blend membrane was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of 3.5 for anionic dyes and 6.0 for metal ions, respectively. The membrane showed highly efficient capture of sunset yellow (above 99%). Meanwhile, the captured sunset yellow was recovered and concentrated with a small volume of alkaline solutions at pH 10.0, which simultaneously regenerated the membrane for its reuse. In a 3-cycle capture-recovery test, the membrane demonstrated a high sunset yellow recovery ratio and a volumetric concentration ratio as high as 400%. Our study provides an alternative strategy for functionalized membrane fabrication, micropollutants removal and recovery.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Quan Qi
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China; Engineering Research Center of Membrane and Water Treatment (Ministry of Education), Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Baoku Zhu
- Engineering Research Center of Membrane and Water Treatment (Ministry of Education), Zhejiang University, Hangzhou, 310027, P. R. China; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
8
|
Liu D, Yin J, Tang H, Wang H, Liu S, Huang T, Fang S, Zhu K, Xie Z. Fabrication of ZIF-67@PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Enhanced molecular selectivity and plasticization resistance in ring-opened Tröger's base polymer membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yin J, Tang H, Xu Z, Li N. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger's base polymer blend ultrafiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Chen Y, Li Y, Dai L, Qin G, Guo J, Zhang Q, Li S, Sherazi TA, Zhang S. High-efficiency Pd nanoparticles loaded porous organic polymers membrane catalytic reactors. Chem Commun (Camb) 2021; 57:3131-3134. [PMID: 33634303 DOI: 10.1039/d0cc08097g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative tactic to prepare porous organic polymer membranes was developed via interfacial azo-coupling polymerization. The membranes possess plentiful anchoring sites for loading Pd nanoparticles, and served as a membrane reactor, which exhibits high-performance catalytic reduction with a flux of 27.3 t m-2 day-1 and good long-term stability due to almost zero Pd leaching.
Collapse
Affiliation(s)
- Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li D, Sun X, Wang W, Gao H, Huang Y, Gao C. A novel antifouling and thermally stable polysulfone ultrafiltration membranes with sulfobetaine polyimide as porogen. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dalong Li
- School of Marine Science and Technology Harbin Institute of Technology at Weihai Weihai China
| | - Xiuhua Sun
- School of Marine Science and Technology Harbin Institute of Technology at Weihai Weihai China
| | - Wei Wang
- School of Environmental Science and Engineering Harbin Institute of Technology Harbin China
| | - Hongwei Gao
- School of Marine Science and Technology Harbin Institute of Technology at Weihai Weihai China
| | - Yudong Huang
- School of Chemical Engineering and Technology Harbin Institute of Technology Harbin China
| | - Changlu Gao
- School of Marine Science and Technology Harbin Institute of Technology at Weihai Weihai China
| |
Collapse
|
13
|
Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Kang Y, Jiao S, Zhao Y, Wang B, Zhang Z, Yin W, Tan Y, Pang G. High-flux and high rejection TiO2 nanofibers ultrafiltration membrane with porous titanium as supporter. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Wu Q, Tiraferri A, Li T, Xie W, Chang H, Bai Y, Liu B. Superwettable PVDF/PVDF- g-PEGMA Ultrafiltration Membranes. ACS OMEGA 2020; 5:23450-23459. [PMID: 32954198 PMCID: PMC7496008 DOI: 10.1021/acsomega.0c03429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 05/05/2023]
Abstract
Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting suitable polymer concentration and blending with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA). This fascinating interfacial phenomenon causes the contact angle of water droplets to drop from the initial value of over 70° to virtually 0° in 0.5 s for the best fabricated membrane. The wetting properties of the membranes were studied by calculating the surface free energy by surface thermodynamic analysis, by evaluating the peak height ratio from Raman spectra, and other surface characterization methods. The superwettability phenomenon is the result of the synergetic effects of high surface free energy, the Wenzel model of wetting, and the crystalline phase of PVDF. Besides superwettability, the PVDF/PVDF-g-PEGMA membranes show great improvements in flux performance, sodium alginate (SA) rejection, and flux recovery upon fouling.
Collapse
Affiliation(s)
- Qidong Wu
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tong Li
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Greater
Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wancen Xie
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Haiqing Chang
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Yuhua Bai
- Infrastructure
Construction Department, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Baicang Liu
- Key
Laboratory of Deep Earth Science and Engineering (Ministry of Education),
College of Architecture and Environment, Institute of New Energy and
Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, P. R. China
- , . Tel: +86-28-85995998. Fax: +86-28-62138325
| |
Collapse
|
16
|
Zuo P, Zhou J, Yang Z, Xu T. Hydrophilic Microporous Polymer Membranes: Synthesis and Applications. Chempluschem 2020; 85:1893-1904. [PMID: 32845086 DOI: 10.1002/cplu.202000486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Indexed: 11/05/2022]
Abstract
Ion and water transfer in subnanometer-sized confined channels of hydrophilic microporous polymer membranes show enormous potential in tackling the ubiquitous trade-off between permeability and selectivity for energy and environment-related membrane technologies. To this end, a variety of hydrophilic polymers of intrinsic microporosity (HPIMs) have been developed. Herein, the synthetic strategies toward HPIMs are summarized, including post-synthetic modification of polymers to introduce polar groups (e. g., amines, hydroxy groups, carboxylic acids, tetrazoles) or charged moieties (e. g., quaternary ammonium salts, sulfonic acids), and the polymerization of hydrophilic monomers. The advantages of HPIM membranes over others when employed in energy conversion and storage, acid gas capture and separation, ionic diodes, and ultrafiltration, are highlighted.
Collapse
Affiliation(s)
- Peipei Zuo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jiahui Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zhengjin Yang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
17
|
Zhang S, Manasa P, Wang Q, Li D, Dang X, XiaoqinNiu, Ran F. Grafting copolymer of thermo-responsive and polysaccharide chains for surface modification of high performance membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Zhang C, Huang R, Tang H, Zhang Z, Xu Z, Li N. Enhanced antifouling and separation properties of Tröger's base polymer ultrafiltration membrane via ring-opening modification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Jiang L, Yun J, Wang Y, Yang H, Xu Z, Xu ZL. High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wu Q, Tiraferri A, Wu H, Xie W, Liu B. Improving the Performance of PVDF/PVDF- g-PEGMA Ultrafiltration Membranes by Partial Solvent Substitution with Green Solvent Dimethyl Sulfoxide during Fabrication. ACS OMEGA 2019; 4:19799-19807. [PMID: 31788612 PMCID: PMC6882131 DOI: 10.1021/acsomega.9b02674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/24/2019] [Indexed: 05/21/2023]
Abstract
Traditional organic solvents used in membrane manufacturing, such as dimethylformamide and tetrahydrofuran, are generally very hazardous and harmful to the environment and human health. Their total or partial substitution with green solvent dimethyl sulfoxide (DMSO) is proposed to fabricate membranes composed of poly(vinylidene fluoride) (PVDF) blended with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PEGMA), with the purpose to accomplish a greener chemical process and enhance the membrane performance. Various organic solvent compositions were first investigated using the Hansen solubility theory, and the best mixture was thus applied experimentally. The membrane prepared by a ratio of N,N-dimethylacetamide/DMSO = 7:3 outperformed the membranes prepared by other solvent mixtures. This membrane showed high wetting behavior with the water contact angle declining from 71 to 7° in 18 s and a pure water flux reaching values larger than 700 L m-2 h-1 under 0.07 MPa applied hydraulic pressure. The membrane rejected sodium alginate at a rate of 87%, and nearly complete flux recovery was achieved following fouling and physical cleaning. The introduction of green chemistry concepts to PVDF/PVDF-g-PEGMA blended membranes is a step forward in the goal to increase the sustainability of membrane production.
Collapse
Affiliation(s)
- Qidong Wu
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Haibo Wu
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Wancen Xie
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Baicang Liu
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
- E-mail: , . Tel: +86-28-85995998. Fax: +86-28-62138325
| |
Collapse
|
21
|
Xie W, Li T, Chen C, Wu H, Liang S, Chang H, Liu B, Drioli E, Wang Q, Crittenden JC. Using the Green Solvent Dimethyl Sulfoxide To Replace Traditional Solvents Partly and Fabricating PVC/PVC-g-PEGMA Blended Ultrafiltration Membranes with High Permeability and Rejection. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00370] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wancen Xie
- College of Architecture and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, People’s Republic of China
| | - Tong Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan 571126, People’s Republic of China
| | - Haibo Wu
- College of Architecture and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, People’s Republic of China
| | - Songmiao Liang
- Vontron Technology Co., Ltd., Guiyang, Guizhou 550018, People’s Republic of China
| | - Haiqing Chang
- College of Architecture and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, People’s Republic of China
| | - Baicang Liu
- College of Architecture and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, People’s Republic of China
| | - Enrico Drioli
- Institute on Membrane Technology ITM-CNR, Via P. Bucci 17/C, 1-87030 Rende, Cosenza, Italy
| | - Qingyuan Wang
- College of Architecture and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, People’s Republic of China
| | - John C. Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|