1
|
Cheng J, Li Z, Bao X, Zhang R, Zhang Z, Hai G, Sun K, Shi W. Retarding the diffusion rate of piperazine through the interface of aqueous/organic phase: Bis-tris propane tuned the trans-state of ultra-low concentration piperazine. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Zhu J, Meng W, Xue Q, Zhang K. Two dimensional sulfonated molybdenum disulfide (S–MoS2) thin-film nanocomposite nanofiltration membrane for selective desalination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Jiang Q, Zhang K. Optimization of Preparation Conditions of Poly(m-phenylene isophthalamide) PMIA Hollow Fiber Nanofiltration Membranes for Dye/Salt Wastewater Treatment. MEMBRANES 2022; 12:1258. [PMID: 36557165 PMCID: PMC9783120 DOI: 10.3390/membranes12121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Externally selective thin film composite (TFC) hollow fiber (HF) nanofiltration membranes (NFMs) hold great industrial application prospects because of their high surface area module. However, the complicated preparation process of the membrane has hindered its mass manufacture and application. In this work, PMIA TFC HF NFMs were successfully prepared by the interfacial polymerization (IP) of piperazine (PIP) with 1,3,5-benzenetricarbonyl trichloride (TMC). The effect of the membrane preparation conditions on their separation performance was systematically investigated. The characterized results showed the successful formation of a polyamide (PA) separation layer on PMIA HF substrates by the IP process. The as-prepared HF NFMs’ performance under optimized conditions achieved the highest pure water permeability (18.20 L·m−2·h−1, 0.35 MPa) and superior salt rejection in the order: RNa2SO4 (98.30%) > RMgSO4 (94.60%) > RMgCl2 (61.48%) > RNaCl (19.24%). In addition, the as-prepared PMIA HF TFC NFMs exhibited desirable pressure resistance at various operating bars and Na2SO4 feed concentrations. Excellent separation performance of chromotrope 2B dye was also achieved. The as-prepared PMIA HF NFMs thus show great promise for printing and dyeing wastewater treatment.
Collapse
Affiliation(s)
- Qinliang Jiang
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Janus membrane with tailored upper and lower surface charges for ion penetration manipulation in high-performance nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Liu Z, Qiang R, Lin L, Deng X, Yang X, Zhao K, Yang J, Li X, Ma W, Xu M. Thermally modified polyimide/SiO2 nanofiltration membrane with high permeance and selectivity for efficient dye/salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Al-Nahari A, Li S, Su B. Negatively charged nanofiltration membrane with high performance via the synergetic effect of benzidinedisulfonic acid and trimethylamine during interfacial polymerization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Chen Y, Sun R, Yan W, Wu M, Zhou Y, Gao C. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu(OH) 2 nanowires for dye/salt wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152897. [PMID: 35031372 DOI: 10.1016/j.scitotenv.2021.152897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
In many important industries, such as the textile printing industry, a large amount of dye/salt wastewater is often discharged, which can destroy the ecological environment of the water body. Membrane technology has a great potential in the treatment of environmental problems caused by dye/salt wastewater. Polyvinyl alcohol (PVA) nanofiltration (NF) membrane has a bright future in dye/salt wastewater treatment, however, works on this are rare. Herein, antibacterial PVA NF membrane incorporated with Cu(OH)2 nanowires for the dye/salt wastewater treatment is reported. The membrane was prepared via coating the solutions containing PVA, glutaraldehyde and Cu(OH)2 nanowires on the polyethersulfone ultrafiltration membrane. Cu(OH)2 nanowires has a diameter of 60 nm and was successfully introduced into the membrane. The introduction of nanowires improved the membrane hydrophilicity and roughness, which is conducive to the improvement of membrane flux. Membrane separation performance for one component solution and dye/salt solution were investigated. The introduction of Cu(OH)2 increases the flux of the membrane obviously (the highest increase is 178.78% (from 21.49 to 38.42 L·m-2·h-1·bar-1, for NaCl solution as the feed). Besides, the membrane doped with nanowires also possessed a high dye/salt selectivity. For one component solution, the dye removal rate was over 97.00% while the salt rejection was low (the lowest was 13.18% (NaCl)). For the dye/salt solution, the dye (Congo Red) rejection kept at a high level (98.91%) and the salt (NaCl) rejection was still low (13.71%), while the flux was also high (37.56 L·m-2·h-1·bar-1). The performance is superior to that of many membranes reported in previous works. Moreover, the Cu(OH)2 nanowires endowed the membrane with an improved and high antibacterial property. The sterilization rate of Escherichia coli and Staphylococcus aureus reached more than 99.99%.
Collapse
Affiliation(s)
- Yingdong Chen
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rongze Sun
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengyao Wu
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yong Zhou
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - CongJie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
8
|
MXene (Ti3C2Tx)/Cellulose Acetate Mixed-Matrix Membrane Enhances Fouling Resistance and Rejection in the Crossflow Filtration Process. MEMBRANES 2022; 12:membranes12040406. [PMID: 35448377 PMCID: PMC9027356 DOI: 10.3390/membranes12040406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 01/04/2023]
Abstract
Obstacles in the membrane-based separation field are mainly related to membrane fouling. This study involved the synthesis and utilization of covalently crosslinked MXene/cellulose acetate mixed matrix membranes with MXene at different concentrations (CCAM-0% to CCAM-12%) for water purification applications. The membranes’ water flux, dye, and protein rejection performances were compared using dead-end (DE) and crossflow (CF) filtration. The fabricated membranes, especially CCAM-10%, exhibited high hydrophilicity, good surface roughness, significantly high water flux, high water uptake, and high porosity. A significantly higher flux was observed in CF filtration relative to DE filtration. Moreover, in CF filtration, the CCAM-10% membrane exhibited 96.60% and 99.49% rejection of methyl green (MG) and bovine serum albumin (BSA), respectively, while maintaining a flux recovery ratio of 67.30% and an irreversible fouling ratio at (Rir) of 32.70, indicating good antifouling performance. Hence, this study suggests that covalent modification of cellulose acetate membranes with MXene significantly improves the performance and fouling resistance of membranes for water filtration in CF mode relative to DE mode.
Collapse
|
9
|
Selective separation of dye and salt by PES/SPSf tight ultrafiltration membrane: Roles of size sieving and charge effect. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118587] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Wei C, Qiang R, Lin L, Gao Y, Ma S, Zhang X, Huang X. Combing three-dimensional water channels and ultra-thin skin layer enable high flux and stability of loose polyimide/SiO2 nanofiltration membranes at low operating pressure via one step in-situ modification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Bioinspired: A 3D vertical silicon sponge-inspired construction of organic-inorganic loose mass transfer nanochannels for enhancing properties of polyimide nanofiltration membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang Y, Gu J, Zhou A, Kong A, Alwan Almijbilee MM, Zheng X, Zhang J, Li W. Poly[acrylate-co-amide] network composite via photopolymerization for organic solvent nanofiltration separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Li Y, Yang R, Zhang R, Cao B, Li P. Preparation of Thermally Imidized Polyimide Nanofiltration Membranes with Macrovoid-Free Structures. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuan Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Cao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pei Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Ji C, Xue S, Lin CW, Mak WH, McVerry BT, Turner CL, Anderson M, Molas JC, Xu Z, Kaner RB. Ultrapermeable Organic Solvent Nanofiltration Membranes with Precisely Tailored Support Layers Fabricated Using Thin-Film Liftoff. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30796-30804. [PMID: 32463653 DOI: 10.1021/acsami.0c06639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-film composite (TFC) membranes are favored for precise molecular sieving in liquid-phase separations; they possess high permeability due to the minimal thickness of the active layer and the high porosity of the support layer. However, current TFC membrane fabrication techniques are limited by the available materials for the selective layer and do not demonstrate the level of structural control needed to substantially advance organic solvent nanofiltration (OSN) membrane technology. In this work, we employ the newly developed thin-film lift-off (T-FLO) technique to fabricate polybenzimidazole (PBI) TFC membranes with porous support layers uniquely tailored to OSN. The drop-cast dense PBI selective layers endow the membranes with an almost complete rejection of common small dye molecules. The polymeric support layer is optimized by a combinatorial approach using four different monomers that alter the cross-linking density and polymer chain flexibility of the final composite. These two properties substantially affect the porogen holding capacity of the reticular polymer network, leading to the formation of different macropore structures. With a 150 nm thick PBI selective layer and fine-tuning of the support layer, the resulting membrane achieves stable and superior permeance of 14.0, 11.7, 16.4, 11.4, 17.1, and 19.7 L m-2 h-1 bar-1 for water, ethanol, methanol, isopropanol, tetrahydrofuran (THF), and acetonitrile, respectively.
Collapse
Affiliation(s)
- Chenhao Ji
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangmei Xue
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng-Wei Lin
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wai H Mak
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Brian T McVerry
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chris L Turner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mackenzie Anderson
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jenna C Molas
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhenliang Xu
- Department of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118139] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Si Z, Wang Z, Cai D, Li G, Li S, Qin P. A high-permeance organic solvent nanofiltration membrane via covalently bonding mesoporous MCM-41 with polyimide. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Shintani T, Akamatsu K, Hamada S, Nakagawa K, Matsuyama H, Yoshioka T. Preparation of monoamine-incorporated polyamide nanofiltration membranes by interfacial polymerization for efficient separation of divalent anions from divalent cations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Zhao GB, Hao YF, He BQ, Song YF, Ji YH, Zhang YH, Bo L, Li JX. A chitosan-separation-layer nanofiltration membrane prepared through homogeneous hybrid and copper ion enhancement. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Wu X, Liu H, Wei Y, Fei Y, Qi H. Negatively charged organic–inorganic hybrid silica nanofiltration membranes for lithium extraction. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Cross-flow deposited hydroxyethyl cellulose (HEC)/polypropylene (PP) thin-film composite membrane for aqueous and non-aqueous nanofiltration. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Ghorbani A, Bayati B, Kikhavani T. MODELLING ION TRANSPORT IN AN AMINE SOLUTION THROUGH A NANOFILTRATION MEMBRANE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20190068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Wang Z, Si Z, Cai D, Li G, Li S, Qin P, Tan T. Improving ZIF-8 stability in the preparation process of polyimide-based organic solvent nanofiltration membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Effect of surface charge and roughness on ultrafiltration membranes performance and polyelectrolyte nanofiltration layer assembly. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Shen YJ, Fang LF, Yan Y, Yuan JJ, Gan ZQ, Wei XZ, Zhu BK. Metal-organic composite membrane with sub-2 nm pores fabricated via interfacial coordination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Gao ZF, Feng Y, Ma D, Chung TS. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|