1
|
Zhu Y, Wang K, Pan Z, Dai Y, Rong J, Zhang T, Xue S, Yang D, Qiu F. Electrostatic spray deposition of boronate affinity imprinted membrane to be used as adsorption separation material. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
2
|
Xu L, Xu G, Li J, Li Y, Huang J, Qiu CW. Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials. PHYSICAL REVIEW LETTERS 2022; 129:155901. [PMID: 36269965 DOI: 10.1103/physrevlett.129.155901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Willis coupling generically stems from bianisotropy or chirality in wave systems. Nevertheless, those schemes are naturally unavailable in diffusion systems described by a single constitutive relation governed by the Fourier law. Here, we report spatiotemporal diffusive metamaterials by modulating thermal conductivity and mass density in heat transfer. The Fourier law should be modified after homogenizing spatiotemporal parameters, featuring thermal Willis coupling between heat flux and temperature change rate. Thermal Willis coupling drives asymmetric heat diffusion, and the diffusion direction is reversible at a critical point determined by the degree of spatiotemporal modulation. Moreover, thermal Willis coupling stands robustly even when only thermal conductivity is modulated. These results may have potential applications for directional diffusion and offer insights into asymmetric manipulation of nonequilibrium mass and energy transfer.
Collapse
Affiliation(s)
- Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University, Haining 314400, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
3
|
Li Y, Yu C, Liu C, Xu Z, Su Y, Qiao L, Zhou J, Bai Y. Mass Diffusion Metamaterials with "Plug and Switch" Modules for Ion Cloaking, Concentrating, and Selection: Design and Experiments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201032. [PMID: 35975426 PMCID: PMC9596857 DOI: 10.1002/advs.202201032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The outstanding abilities of metamaterials to manipulate physical fields are extensively studied in both wave-based and diffusion-based fields. However, mass diffusion metamaterials, with the ability to manipulate diffusion with practical applications associated with chemical and biochemical engineering, have not yet been experimentally demonstrated. In this work, ion cloaking, concentrating, and selection in liquid solvents are verified by both simulations and experiments, and the concept of a "plug and switch" metamaterial is proposed based on scattering cancellation (SC) to achieve switchable functions by plugging modularized functional units into a functional motherboard. Plugging in any module barely affects the environmental diffusion field, but the module choice impacts different diffusion behaviors in the central region. Cloaking strictly hinds ion diffusion, and concentrating increase diffusion flux, while cytomembrane-like ion selection permits the entrance of some ions but blocks others. In addition, these functions are demonstrated in special applications like the catalytic enhancement by the concentrator and the protein protection by the ion selector. This work not only experimentally demonstrates the effective manipulation of mass diffusion by metamaterials, but also shows that the "plug and switch" design is extensible and reconfigurable. It facilitates novel applications including sustained drug release, catalytic enhancement, bioinspired cytomembranes, etc.
Collapse
Affiliation(s)
- Yang Li
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Chuanbao Liu
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Zhengjiao Xu
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| |
Collapse
|
4
|
Blevins AK, Wang M, Lehmann ML, Hu L, Fan S, Stafford CM, Killgore JP, Lin H, Saito T, Ding Y. Photopatterning of two stage reactive polymer networks with CO 2-philic thiol–acrylate chemistry: enhanced mechanical toughness and CO 2/N 2 selectivity. Polym Chem 2022. [DOI: 10.1039/d2py00148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two stage reactive polymer (TSRP) networks can be programmed with spatially varying heterogeneity, presenting a new way of designing material structure and controlling or enhancing properties.
Collapse
Affiliation(s)
- Adrienne K. Blevins
- Materials Science & Engineering Program, University of Colorado, Boulder, CO, 80303, USA
| | - Mengyuan Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michelle L. Lehmann
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shouhong Fan
- Membrane Science, Engineering and Technology Center, Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Christopher M. Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yifu Ding
- Materials Science & Engineering Program, University of Colorado, Boulder, CO, 80303, USA
- Membrane Science, Engineering and Technology Center, Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
5
|
Chen L, Pang Y, Luo Y, Cheng X, Lv B, Li C. Separation and purification of plant terpenoids from biotransformation. Eng Life Sci 2021; 21:724-738. [PMID: 34764825 PMCID: PMC8576074 DOI: 10.1002/elsc.202100014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022] Open
Abstract
The production of plant terpenoids through biotransformation has undoubtedly become one of the research hotspots, and the continuous upgrading of the corresponding downstream technology is also particularly important. Downstream technology is the indispensable technical channel for the industrialization of plant terpenoids. How to efficiently separate high-purity products from complex microbial fermentation broths or enzyme-catalyzed reactions to achieve high separation rates, high returns and environmental friendliness has become the focus of research in recent years. This review mainly introduces the common separation methods of plant terpenoids based on biotransformation from the perspectives of engineering strain construction, unit separation technology, product properties and added value. Then, further attention was paid to the application prospects of intelligent cell factories and control in the separation of plant terpenoids. Finally, some current challenges and prospects are proposed, which provide possible directions and guidance for the separation and purification of terpenoids and even industrialization.
Collapse
Affiliation(s)
- Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
- Key Lab for Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijingP. R. China
| |
Collapse
|
6
|
Cirillo AI, Tomaiuolo G, Guido S. Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. MICROMACHINES 2021; 12:820. [PMID: 34357230 PMCID: PMC8305447 DOI: 10.3390/mi12070820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use of membrane separation units. As a matter of fact, membrane technology is a key route towards process intensification, having the potential to replace conventional separation procedures, with significant energy savings and reduced environmental impact, in a broad range of applications, from water purification to food and pharmaceutical industries. Despite all the research efforts so far, fouling still represents an unsolved problem. The complex interplay of physical and chemical mechanisms governing its evolution is indeed yet to be fully unraveled and the role played by foulants' properties or operating conditions is an area of active research where microfluidics can play a fundamental role. The aim of this review is to explore fouling through microfluidic systems, assessing the fundamental interactions involved and how microfluidics enables the comprehension of the mechanisms characterizing the process. The main mathematical models describing the fouling stages will also be reviewed and their limitations discussed. Finally, the principal dynamic investigation techniques in which microfluidics represents a key tool will be discussed, analyzing their employment to study fouling.
Collapse
Affiliation(s)
- Andrea Iginio Cirillo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| |
Collapse
|
7
|
Blevins AK, Cox LM, Hu L, Drisko JA, Lin H, Bowman CN, Killgore JP, Ding Y. Spatially Controlled Permeability and Stiffness in Photopatterned Two-Stage Reactive Polymer Films for Enhanced CO2 Barrier and Mechanical Toughness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adrienne K. Blevins
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| | - Lewis M. Cox
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, Montana 59715, United States
| | - Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | | | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christopher N. Bowman
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| | | | - Yifu Ding
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
8
|
Akbari A, Karimi-Sabet J, Ghoreishi SM. Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Obtainment and Characterization of Hydrophilic Polysulfone Membranes by N-Vinylimidazole Grafting Induced by Gamma Irradiation. Polymers (Basel) 2020; 12:polym12061284. [PMID: 32512692 PMCID: PMC7362247 DOI: 10.3390/polym12061284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 11/17/2022] Open
Abstract
Polysulfone (PSU) film and N-vinylimidazole (VIM) were used to obtain grafted membranes with high hydrophilic capacity. The grafting process was performed by gamma irradiation under two experiments: (1) different irradiation doses (100-400 kGy) and VIM 50% solution; (2) different concentration of grafted VIM (30-70%) and 300 kGy of irradiation dose. Characteristics of the grafted membranes were determined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, swelling degree, desalination test, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Both experiments indicated that the absorbed dose 300 kGy and the VIM concentration, at 50% v/v, were effective to obtain PSU grafted membranes with 14.3% of grafting yield. Nevertheless, experimental conditions, 400 kGy, VIM 50% and 300 kGy, VIM 60-70% promoted possible membrane degradation and VIM homopolymerization on the membrane surface, which was observed by SEM images; meanwhile, 100-200 kGy and VIM 30-50% produced minimal grafting (2 ± 0.5%). Hydrophilic surface of the grafted PSU membranes by 300 kGy and VIM 50% v/v were corroborated by the water contact angle, swelling degree and desalination test, showing a decrease from 90.7° ± 0.3 (PSU film) to 64.3° ± 0.5; an increment of swelling degree of 25 ± 1%, and a rejection-permeation capacity of 75 ± 2%. In addition, the thermal behavior of grafted PSU membranes registered an increment in the degradation of 20%, due to the presence of VIM. However, the normal temperature of the membrane operation did not affect this result; meanwhile, the glass transition temperature (Tg) of the grafted PSU membrane was found at 185.4 ± 0.5 °C, which indicated an increment of 15 ± 1%.
Collapse
|
10
|
Separation of microbial oil produced by Mortierella isabellina using polymeric membranes. Bioprocess Biosyst Eng 2020; 43:1943-1949. [PMID: 32474747 DOI: 10.1007/s00449-020-02383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
The objective of this work was to concentrate, through a membrane separation process, the fatty acids from oil/solvent mixture. The oil was obtained by ultrasound-assisted extraction from freeze-dried cells of Mortierella isabellina. The concentration of the fatty acids was investigated using flat-sheet polymer membranes of ultrafiltration and nanofiltration. The effects of temperature and pressure were evaluated by the retention of the fatty acids. Oil retentions between 45.23 and 58.20% to ultrafiltration membrane and 43.50 and 56.00% to nanofiltration membrane were observed. The best condition for the ultrafiltration membrane was 4 bar and 40 °C and for nanofiltration membrane was 12 bar and 50 °C. The oil contains a high concentration of oleic acid and palmitic acid that is a desirable property for the biodiesel production. The results showed the applicability of this technology in the solvent recovery step whereas the oil recovered contains a high concentration of fatty acids.
Collapse
|
11
|
Lee J, Kim JS, Moon SY, Park CY, Kim JF, Lee YM. Dimensionally-controlled densification in crosslinked thermally rearranged (XTR) hollow fiber membranes for CO2 capture. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Sarwar Z, Yousef S, Tatariants M, Krugly E, Čiužas D, Danilovas PP, Baltusnikas A, Martuzevicius D. Fibrous PEBA-graphene nanocomposite filaments and membranes fabricated by extrusion and additive manufacturing. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Restrepo-Flórez JM, Maldovan M. Permeabilities and selectivities in anisotropic planar membranes for gas separations. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Affiliation(s)
| | - Martin Maldovan
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia
- School of Physics Georgia Institute of Technology Atlanta Georgia
| |
Collapse
|