1
|
Matveev D, Anokhina T, Raeva A, Borisov I, Grushevenko E, Khashirova S, Volkov A, Bazhenov S, Volkov V, Maksimov A. High-Performance Porous Supports Based on Hydroxyl-Terminated Polysulfone and CO 2/CO-Selective Composite Membranes. Polymers (Basel) 2024; 16:3453. [PMID: 39771304 PMCID: PMC11680076 DOI: 10.3390/polym16243453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO2/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO2) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process. Since the casting solution properties (e.g., viscosity) and the interactions in a three-component system (polymer, solvent, and non-solvent) play noticeable roles in the NIPS process, polysulfone samples in a wide range of molecular weights (Mw = 76,000-122,000 g·mol-1) with terminal hydroxyl groups were synthesized for the first time. Commercial PSF with predominantly terminal chlorine groups (Ultrason® S 6010) was used as a reference. The PSF samples were characterized by NMR, DSC, and TGA methods, and the Hansen solubility parameters were calculated. It was found that increasing the ratio of terminal -OH over -Cl groups improved the "solubility" of PSF in N-methyl-2-pyrrolidone (NMP) and water. A direct dependence of the gas permeance of porous supports on the coagulation rate of the casting solution was identified for the first time. It was shown that the use of synthesized PSF (Mw = 76,000 g·mol-1, Mw/Mn = 3.0, (-OH):(-Cl) ratio of 4.7:1) enabled a porous support with a CO2 permeance of 26,700 GPU to be obtained, while the support formed from a commercial PSF Ultrason® S 6010 (Mw = 68,000 g·mol-1, Mw/Mn = 1.7, (-OH):(-Cl) ratio of 1:1.9) under the same conditions demonstrated 4300 GPU. The siloxane-based materials were used for the selective layer since the thin films based on rubbery polymers do not undergo the same accelerating physical aging as glassy polymers. Two types of materials were screened for the selective layer: synthesized polymethyltrifluoroethylacrylate siloxane-polydecylmethylsiloxane (50F3) copolymer, and polydimethylsiloxane (PDMS). 50F3 siloxane was studied for gas separation applications for the first time. It was shown that the permeance of composite membranes based on high-performance porous supports from the PSF samples synthesized was 3.5 times higher than that from similar composite membranes based on supports from a commercial Ultrason® S 6010 PSF with a permeance value of 4300 GPU for CO2. It was found that the enhanced gas permeance of composite membranes based on the highly permeable porous PSF supports developed was observed for both 50F3 polysiloxane and commercial PDMS. At the same time, the CO2/CO selectivity of the composite membranes with a 50F3-selective layer (9.1-9.3) is 1.5 times higher than that of composite membranes with a PDMS-selective layer. This makes the F-containing 50F3 polysiloxane a promising polymer for CO2/CO separation.
Collapse
Affiliation(s)
- Dmitry Matveev
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Tatyana Anokhina
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Alisa Raeva
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Ilya Borisov
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Evgenia Grushevenko
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia;
| | - Svetlana Khashirova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University, St. Chernyshevsky, 173, 360004 Nalchik, Russia;
| | - Alexey Volkov
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Stepan Bazhenov
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Vladimir Volkov
- A.V.Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect, 29, 119991 Moscow, Russia; (T.A.); (A.R.); (E.G.); (A.V.); (S.B.); (V.V.)
| | - Anton Maksimov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia;
| |
Collapse
|
2
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Zhang X, Wang N, Liu T, Wu Y, Wang Z, Wang H. Precisely tailored graphene oxide membranes on glass fiber supports for efficient hydrogen separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Chen TY, Deng X, Lin LC, Ho WW. 13C NMR study of amino acid salts in facilitated transport membranes for post-combustion carbon capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
|
6
|
Chen TY, Deng X, Lin LC, Ho WW. New sterically hindered polyvinylamine-containing membranes for CO2 capture from flue gas. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yang Z, Ao D, Guo X, Nie L, Qiao Z, Zhong C. Preparation and characterization of small-size amorphous MOF mixed matrix membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
García Jiménez CD, Habert AC, Borges CP. Polyurethane/polyethersulfone dual‐layer anisotropic membranes for
CO
2
removal from flue gas. J Appl Polym Sci 2021. [DOI: 10.1002/app.50476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alberto Cláudio Habert
- Chemical Engineering Program COPPE, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Cristiano Piacsek Borges
- Chemical Engineering Program COPPE, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
9
|
Chen KK, Han Y, Zhang Z, Ho WW. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
|
11
|
Han Y, Yang Y, Ho WSW. Recent Progress in the Engineering of Polymeric Membranes for CO 2 Capture from Flue Gas. MEMBRANES 2020; 10:E365. [PMID: 33238418 PMCID: PMC7709046 DOI: 10.3390/membranes10110365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
CO2 capture from coal- or natural gas-derived flue gas has been widely considered as the next opportunity for the large-scale deployment of gas separation membranes. Despite the tremendous progress made in the synthesis of polymeric membranes with high CO2/N2 separation performance, only a few membrane technologies were advanced to the bench-scale study or above from a highly idealized laboratory setting. Therefore, the recent progress in polymeric membranes is reviewed in the perspectives of capture system energetics, process synthesis, membrane scale-up, modular fabrication, and field tests. These engineering considerations can provide a holistic approach to better guide membrane research and accelerate the commercialization of gas separation membranes for post-combustion carbon capture.
Collapse
Affiliation(s)
- Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
| | - Yutong Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210-1178, USA
| |
Collapse
|
12
|
Pang R, Chen KK, Han Y, Ho WW. Highly permeable polyethersulfone substrates with bicontinuous structure for composite membranes in CO2/N2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Mohd Shafie ZMH, Ahmad AL, Low SC, Rode S, Belaissaoui B. Lithium chloride (LiCl)-modified polyethersulfone (PES) substrate surface pore architectures on thin poly(dimethylsiloxane) (PDMS) dense layer formation and the composite membrane's performance in gas separation. RSC Adv 2020; 10:9500-9511. [PMID: 35497224 PMCID: PMC9050143 DOI: 10.1039/d0ra00045k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
The use of pore forming agents has been notable for improving the water flux in a water-based separation membrane but are rarely being studied as a methodology to influence the substrate's surface architectures for composite membrane fabrication in gas separation. In this study, the influence of lithium chloride (LiCl) on the surface pore architectures and hence, the gas permeance, has been studied in both bare and composite forms with poly(dimethylsiloxane) (PDMS). 1-4 wt% of LiCl was mixed with the dope solution of PES/NMP in the ratio 0.19 and was casted via the dry-wet phase inversion method. Bare substrates were noted to possess increasingly larger surface pore sizes but at a diminishing surface pore density with maximum surface porosity at 2 wt% LiCl. The permeances were, however, significantly reduced with the increase in the LiCl content from 105 300 to 4300 GPU for N2 gas, presumably due to the thicker skin layer. Nevertheless, the porous surface morphology was confirmed and exhibited Knudsen selectivity with a CO2/N2 selectivity of about 0.8, signifying minimal gas flow resistance by the substrates. Upon coating with a similar amount of thin PDMS layer, the composite permeances retain the same trend with values from 361.9 GPU for 0 wt% LiCl substrates to 68.8 GPU for 4 wt% LiCl substrates for CO2 gas at a consistent selectivity of about 14. As the PDMS layer of the same volumes were used and no significant difference in the coating thickness was noted, the mixed influence of pore intrusion and lateral diffusion is hypothesised at the substrate-coating interface owing to the different surface pore architectures of the substrates.
Collapse
Affiliation(s)
- Zulfida Mohamad Hafis Mohd Shafie
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia 14300 Nibong Tebal Penang Malaysia .,Laboratoire Réactions & Génie des Procédés (LRGP) (UMR 7274) ENSIC, Université de Lorraine 1 Rue Grandville 54001 Nancy France
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia 14300 Nibong Tebal Penang Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia 14300 Nibong Tebal Penang Malaysia
| | - Sabine Rode
- Laboratoire Réactions & Génie des Procédés (LRGP) (UMR 7274) ENSIC, Université de Lorraine 1 Rue Grandville 54001 Nancy France
| | - Bouchra Belaissaoui
- Laboratoire Réactions & Génie des Procédés (LRGP) (UMR 7274) ENSIC, Université de Lorraine 1 Rue Grandville 54001 Nancy France
| |
Collapse
|
14
|
Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Kamio E, Tanaka M, Shirono Y, Keun Y, Moghadam F, Yoshioka T, Nakagawa K, Matsuyama H. Hollow Fiber-Type Facilitated Transport Membrane Composed of a Polymerized Ionic Liquid-Based Gel Layer with Amino Acidate as the CO2 Carrier. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eiji Kamio
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masashi Tanaka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuta Shirono
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yujeong Keun
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Farhad Moghadam
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Casado-Coterillo C, Fernández-Barquín A, Irabien A. Effect of Humidity on CO 2/N 2 and CO 2/CH 4 Separation Using Novel Robust Mixed Matrix Composite Hollow Fiber Membranes: Experimental and Model Evaluation. MEMBRANES 2019; 10:E6. [PMID: 31905891 PMCID: PMC7023317 DOI: 10.3390/membranes10010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
In this work, the performance of new robust mixed matrix composite hollow fiber (MMCHF) membranes with a different selective layer composition is evaluated in the absence and presence of water vapor in CO2/N2 and CO2/CH4 separation. The selective layer of these membranes is made of highly permeable hydrophobic poly(trimethyl-1-silylpropine) (PTMSP) and hydrophilic chitosan-ionic liquid (IL-CS) hybrid matrices, respectively, filled with hydrophilic zeolite 4A particles in the first case and HKUST-1 nanoparticles in the second, coated over compatible supports. The effect of water vapor in the feed or using a commercial hydrophobic PDMSXA-10 HF membrane has also been studied for comparison. Mixed gas separation experiments were performed at values of 0 and 50% relative humidity (RH) in the feed and varying CO2 concentration in N2 and CH4, respectively. The performance has been validated by a simple mathematical model considering the effect of temperature and relative humidity on membrane permeability.
Collapse
Affiliation(s)
- Clara Casado-Coterillo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, s/n, 39005 Santander, Spain; (A.F.-B.); (A.I.)
| | | | | |
Collapse
|
17
|
A simple self-regulating permeability and selectivity of poly (arylene ether ketone) with amino groups for gas separation membrane. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Hou L, Wang Z, Xu J, Chen Z. Poly(arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1906-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Han Y, Salim W, Chen KK, Wu D, Ho WW. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|