1
|
Anuradha, Joshi US, Jewrajka SK. Low Fouling Molecular Selective Channels through Self-assembly of Cross-linked Block Copolymer Micelles for Selective Separation of Dye and Salt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61344-61359. [PMID: 39437335 DOI: 10.1021/acsami.4c14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report the solvent-evaporation and ionic cross-linking mediated self-assembly of the shell cross-linked micelles of the amphiphilic triblock copolymer containing middle poly(methyl methacrylate) block (hydrophobic) and poly(2-dimethylamino)ethyl methacrylate end blocks (hydrophilic) on the membrane substrate to create molecular selective channels. The formation of selective channels on the substrate is attributed to the local increase of micelle concentration upon solvent evaporation, which leads to the core-core hydrophobic interaction. The post-ionic cross-linking of the shell part further reduces the intermicelle distance, thereby creating interstices for selective separation. The TUF-1:1 membrane prepared by the self-assembly of the cross-linked micelles (triblock copolymer:halide-terminated PEG-based = 1:1 w w-1) and by the post-ionic cross-linking shows molecular weight cutoff of 3000 g mol-1 and pure water permeance of 52 L m-2 h-1 bar-1. The membrane shows 99.5-99.9% rejection of Congo red and Direct red-80 in the presence or absence of salts and Na2SO4 to dye separation factor of about 900. The added functionality (PEG) in the micelle structure provides good fouling-resistant properties toward dye and bovine serum albumin. This work provides the membrane formation mechanism and the advantages of the membrane for fractionation and resource recovery applications.
Collapse
Affiliation(s)
- Anuradha
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Urvashi S Joshi
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
3
|
Ye Q, Wang R, Yan S, Chen B, Zhu X. Bioinspired photo-responsive membrane enhanced with "light-cleaning" feature for controlled molecule release. J Mater Chem B 2022; 10:2617-2627. [PMID: 35014659 DOI: 10.1039/d1tb02329b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the stomatal feature of plant leaves, a photo-responsive membrane was developed to enhance the removal of irreversible membrane fouling and to control molecule release. Photo-responsive polymers were prepared by reacting the amine group of 4-amineazobenzene with about 3, 5 and 9 out of 12 carboxylic groups of PMAA which was grafted from P(VDF-CTFE) with a certain length. Subsequently, high-flux photo-responsive membranes (PRMs) were prepared from the heterogeneous polymers with different contents of photo-switchable azobenzene following a non-solvent-induced phase-inversion protocol. The pore size and surface hydrophilicity of PRMs could be reversibly increased by switching visible light to UV irradiation, which dramatically enhanced the backflushing efficiency on PRMs under UV irradiation. The "light-cleaning" process could recover more than 90% of the irreversible flux decline caused by typical organic foulant (BSA) and biological foulant (E. coli) on PRMs. The higher the content of azobenzene, the more obvious the pore size and hydrophilicity variation after light switching but the smaller the absolute pore size observed for PRMs. On the other hand, the light-switching gates of PRMs enabled the controlled release of molecules with different sizes. The novel PRM provided an efficient solution to mitigate irreversible membrane fouling and a light-triggered molecule release protocol, which would improve the membrane performance and further expand the application field of the membrane.
Collapse
Affiliation(s)
- Qisheng Ye
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China. .,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China. .,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China. .,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China. .,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China. .,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
4
|
Ye Q, Wang R, Chen C, Chen B, Zhu X. High-Flux pH-Responsive Ultrafiltration Membrane for Efficient Nanoparticle Fractionation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56575-56583. [PMID: 34786948 DOI: 10.1021/acsami.1c16673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fractionation of nanoparticles with different sizes from the mixture by using a single membrane would reduce the membrane cost and enhance the efficiency. In this study, an amphiphilic pH-responsive copolymer was prepared by grafting a pH-responsive hydrophilic polymethacrylic acid (PMAA) side chain from a hydrophobic poly(vinylidene fluoride-co-chlorotrifluoroethylene), P(VDF-CTFE) backbone. Subsequently, the isoporous pH-responsive membranes (PPMs) were prepared from the functional copolymers with different PMAA chain lengths. PPM indicated reversible pore size decreasing with the increasing pH of the feed. Moreover, the membrane pore size variation range was further extended by adjusting the PMAA side chain length of the copolymer to reach a wide range from 10.2 to 34.5 nm. Owning to the amphiphilic nature of the copolymer, PPM showed a narrow pore size distribution which is responsible for the much higher pure water flux of PPM than the conventional UF membrane with similar retention capability. In the fractionation test, the mixed 20 and 30 nm polystyrene nanoparticles were penetrating PPM at pH 11 and 3, respectively. The pH-responsive PPM indicated great potential for nanoparticle fractionation, while the uniform pores of PPM further enhanced the membrane performance in terms of permeability and selectivity.
Collapse
Affiliation(s)
- Qisheng Ye
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Cheng Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
5
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
6
|
Foroutani K, Ghasemi SM, Pourabbas B. Molecular tailoring of polystyrene-block-poly (acrylic acid) block copolymer toward additive-free asymmetric isoporous membranes via SNIPS. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Bukusoglu E, Koku H, Çulfaz-Emecen PZ. Addressing challenges in the ultrafiltration of biomolecules from complex aqueous environments. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Shao F, Wang Y, Tonge CM, Sauvé ER, Hudson ZM. Self-assembly of luminescent triblock bottlebrush copolymers in solution. Polym Chem 2020. [DOI: 10.1039/c9py01695c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly presents bottom-up strategies for the construction of complex micelles from luminescent bottlebrush copolymers.
Collapse
Affiliation(s)
- Feng Shao
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Yonghui Wang
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | | | - Ethan R. Sauvé
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Zachary M. Hudson
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
9
|
Wang Y, Shao F, Sauvé ER, Tonge CM, Hudson ZM. Self-assembly of giant bottlebrush block copolymer surfactants from luminescent organic electronic materials. SOFT MATTER 2019; 15:5421-5430. [PMID: 31243420 DOI: 10.1039/c9sm00931k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bottlebrush copolymers have shown promise as building blocks for self-assembled nanomaterials due to their reduced chain entanglement relative to linear polymers and their ability to self-assemble with remarkably low critical micelle concentrations (CMCs). Concurrently, the preparation of bottlebrush polymers from organic electronic materials has recently been described, allowing multiple optoelectronic functions to be incorporated along the length of single bottlebrush strands. Here we describe the self-assembly of bottlebrush surfactants containing soluble n-butyl acrylate blocks and carbazole-based organic semiconductors, which self-assemble in selective solvent to give spherical micelles with CMCs below 54 nM. These narrowly dispersed structures were stable in solution at high dilution over periods of months, and could further be functionalized with fluorescent dyes to give micelles with quantum yields of 100%. These results demonstrate that bottlebrush-based nanostructures can be formed from organic semiconductor building blocks, opening the door to the preparation of fluorescent or redox-active micelles from giant polymeric surfactants.
Collapse
Affiliation(s)
- Yonghui Wang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Feng Shao
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Ethan R Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|