1
|
Xue B, Zhu MZ, Fu SQ, Huang PP, Qian H, Liu PN. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Chen R, Mao L, Matindi CN, Liu G, He J, Cui Z, Ma X, Fang K, Wu B, Mamba BB, Li J. Tailoring the micro-structure of PVC/SMA-g-PEG blend ultrafiltration membrane with simultaneously enhanced hydrophilicity and toughness by in situ reaction-controlled phase inversion. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
4
|
Wang C, Song X, Liu Y, Zhang C. PVC-g-PVP amphiphilic polymer synthesis by ATRP and its membrane separation performance for silicone-containing wastewater. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Hu J, Wang W, Zhu X, Liu S, Wang Y, Xu Y, Zhou S, He X, Xue Z. Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Li S, Xiao Z, Guo K, Gan H, Wang J, Zhang Y, Yu L, Xue Z. Stabilizing Liquid Electrolytes in a Porous PVDF Matrix Incorporated with Star Polymers with Linear PEG Arms and CycloPEG Cores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9616-9625. [PMID: 32787134 DOI: 10.1021/acs.langmuir.0c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous membranes fabricated from poly(vinylidene fluoride) (PVDF) and a star polymer with linear poly(ethylene glycol) (PEG) arms and cycloPEG cores were fabricated via the phase-separation method. The porous gel polymer electrolytes (PGPEs) were obtained by immersing the porous membranes in the electrolyte solution. When the additive amount of star polymer was up to 20 wt %, the prepared membrane had the largest porosity and the pores were uniformly distributed in the membrane. The star polymer can not only decrease the crystallization of PVDF and enhance the absorption of liquid electrolyte but also offer ion conduction channels (cycloPEG cores). Therefore, the PGPE with 20 wt % star polymers exhibited competitive ionic conductivities of 1.27 mS cm-1 at 30 °C and 2.89 mS cm-1 at 80 °C. To stabilize the liquid electrolyte in the holes of porous membranes, a gelator was introduced in the liquid electrolyte to form gelled porous gel polymer electrolytes (GPGPEs), and the leakage of liquid electrolytes was thus remarkably reduced. The ionic conductivity of GPGPEs with 20 wt % star polymer and 1.5 wt % gelator was importantly improved at high temperatures (6.02 mS cm-1 at 80 °C). We systematically investigated the electrochemical performances of PGPEs without star polymer, PGPEs with star polymer, and GPGPEs with star polymer. The incorporation of star polymers with linear PEG arms and cycloPEG cores into the PGPEs and GPGPEs significantly improved the electrochemical performances of the lithium metal/LiFePO4 cell assembled with the PGPEs or GPGPEs.
Collapse
Affiliation(s)
- Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuliu Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kairui Guo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huihui Gan
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liping Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Cai C, Fu J, Zhang C, Wang C, Sun R, Guo S, Zhang F, Wang M, Liu Y, Chen J. Highly flexible reduced graphene oxide@polypyrrole-polyethylene glycol foam for supercapacitors. RSC Adv 2020; 10:29090-29099. [PMID: 35521096 PMCID: PMC9055932 DOI: 10.1039/d0ra05199c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
A flexible and free-standing 3D reduced graphene oxide@polypyrrole–polyethylene glycol (RGO@PPy–PEG) foam was developed for wearable supercapacitors. The device was fabricated sequentially, beginning with the electrodeposition of PPy in the presence of a PEG–borate on a sacrificial Ni foam template, followed by a subsequent GO wrapping and chemical reduction process. The 3D RGO@PPy–PEG foam electrode showed excellent electrochemical properties with a large specific capacitance of 415 F g−1 and excellent long-term stability (96% capacitance retention after 8000 charge–discharge cycles) in a three electrode configuration. An assembled (two-electrode configuration) symmetric supercapacitor using RGO@PPy–PEG electrodes exhibited a remarkable specific capacitance of 1019 mF cm−2 at 2 mV s−1 and 95% capacitance retention over 4000 cycles. The device exhibits extraordinary mechanical flexibility and showed negligable capacitance loss during or after 1000 bending cycles, highlighting its great potential in wearable energy devices. A flexible and free-standing 3D reduced graphene oxide@polypyrrole–polyethylene glycol (RGO@PPy–PEG) foam was developed for wearable supercapacitors.![]()
Collapse
Affiliation(s)
- Chaoyue Cai
- Department of Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China .,Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Jialong Fu
- Department of Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China .,Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Chengyan Zhang
- Department of Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China .,Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Cheng Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Rui Sun
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Shufang Guo
- Department of Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China .,Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Fan Zhang
- Department of Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China .,Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Mingyan Wang
- Department of Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China .,Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University Lianyungang 222005 China
| | - Yuqing Liu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China Chengdu 610054 PR China.,Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong Squires Way North Wollongong NSW2519 Australia
| | - Jun Chen
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong Squires Way North Wollongong NSW2519 Australia
| |
Collapse
|
8
|
Tang Q, Wang K, Ren X, Zhang Q, Lei W, Jiang T, Shi D. Preparation of porous antibacterial polyamide 6 (PA6) membrane with zinc oxide (ZnO) nanoparticles selectively localized at the pore walls via reactive extrusion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137018. [PMID: 32041003 DOI: 10.1016/j.scitotenv.2020.137018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Antibacterial polymer membranes have been widely used in many fields of our daily life. In this study, porous PA6 membrane with ZnO nanoparticles attaching on to the surface of inner pore walls is prepared. Firstly, SMA (styrene maleic anhydride copolymer) is used to graft onto the surface of ZnO nanoparticle in DMF (dimethylformamide). Then the pre-treated ZnO nanoparticles (ZnO-SMA) are added into SEBS (Styrene-ethylene-butylene-styrene copolymer)/PA6 (60/40 wt/wt) blends with co-continuous morphology. The effects of SMA molecular structure (molecular weight and maleic anhydride content) used for ZnO-SMA nanoparticles on their dispersion states in SEBS/PA6/ZnO-SMA nanocomposites are investigated. When SMA3 (MAH = 8 wt%, Mn = 250,000 g mol-1), which has relatively higher molecular weight and lower MAH content, is used as the pre-treating agent, ZnO-SMA3 nanoparticles tend to be dispersed at the phase interface in SEBS/PA6/ZnO-SMA nanocomposites. However, when SMA2 (MAH = 23 wt%, Mn = 110,000 g mol-1) with relatively lower molecular weight and higher MAH content is used, no ZnO-SMA2 nanoparticles locate at the interface but stay within PA6 phase. Porous PA6 membranes are obtained by selectively etching SEBS phase out with xylene. It can be found that porous PA6 membrane containing ZnO-SMA3 nanoparticles still exhibits much better antibacterial property (R = 3.76) toward S. aureus even at a very low ZnO content (0.5 wt%). This result should be ascribed to almost all the ZnO-SMA3 nanoparticles being exposed to the surface of inner pore walls of PA6 membrane. This work proposes an effective method to prepare porous polymer membrane with functional nanoparticles selectively located at the inner pore walls.
Collapse
Affiliation(s)
- Qi Tang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Kang Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiaoming Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Qunchao Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Weiwei Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Tao Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Dean Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
9
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Li S, Jiang K, Wang J, Zuo C, Jo YH, He D, Xie X, Xue Z. Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01641] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ke Jiang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ye Hyang Jo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan He
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|