1
|
Ai S, Wu X, Wang J, Li X, Hao X, Meng Y. Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1773. [PMID: 39591015 PMCID: PMC11597872 DOI: 10.3390/nano14221773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024]
Abstract
Solid-state lithium batteries exhibit high-energy density and exceptional safety performance, thereby enabling an extended driving range for electric vehicles in the future. Solid-state electrolytes (SSEs) are the key materials in solid-state batteries that guarantee the safety performance of the battery. This review assesses the research progress on solid-state electrolytes, including polymers, inorganic compounds (oxides, sulfides, halides), and organic-inorganic composites, the challenges related to solid-state batteries in terms of their interfaces, and the status of industrialization research on solid-state electrolytes. For each kind of solid-state electrolytes, details on the preparation, properties, composition, ionic conductivity, ionic migration mechanism, and structure-activity relationship, are collected. For the challenges faced by solid-state batteries, the high interfacial resistance, the side reactions between solid-state electrolytes and electrodes, and interface instability, are mainly discussed. The current industrialization research status of various solid electrolytes is analyzed in regard to relevant enterprises from different countries. Finally, the potential development directions and prospects of high-energy density solid-state batteries are discussed. This review provides a comprehensive reference for SSE researchers and paves the way for innovative advancements in regard to solid-state lithium batteries.
Collapse
Affiliation(s)
- Shun Ai
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Xianli Wu
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jintao Wang
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Xiaofeng Hao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yuezhong Meng
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Li X, Deng Y, Li K, Yang Z, Hu X, Liu Y, Zhang Z. Advancements in Performance Optimization of Electrospun Polyethylene Oxide-Based Solid-State Electrolytes for Lithium-Ion Batteries. Polymers (Basel) 2023; 15:3727. [PMID: 37765580 PMCID: PMC10536473 DOI: 10.3390/polym15183727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Polyethylene oxide (PEO)-based solid-state electrolytes for lithium-ion batteries have garnered significant interest due to their enhanced potential window, high energy density, and improved safety features. However, the issues such as low ionic conductivity at ambient temperature, substantial ionic conductivity fluctuations with temperature changes, and inadequate electrolyte interfacial compatibility hinder their widespread applications. Electrospinning is a popular approach for fabricating solid-state electrolytes owing to its superior advantages of adjustable component constitution and the unique internal fiber structure of the resultant electrolytes. Thus, this technique has been extensively adopted in related studies. This review provides an overview of recent advancements in optimizing the performance of PEO solid-state electrolytes via electrospinning technology. Initially, the impacts of different lithium salts and their concentrations on the performance of electrospun PEO-based solid-state electrolytes were compared. Subsequently, research pertaining to the effects of various additives on these electrolytes was reviewed. Furthermore, investigations concerning the enhancement of electrospun solid-state electrolytes via modifications of PEO molecular chains are herein detailed, and lastly, the prevalent challenges and future directions of PEO-based solid-state electrolytes for lithium-ion batteries are summarized.
Collapse
Affiliation(s)
- Xiuhong Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Yichen Deng
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Kai Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Zhiyong Yang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Xinyu Hu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| | - Yong Liu
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100000, China
| | - Zheng Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (Y.D.); (K.L.); (Z.Y.); (X.H.)
| |
Collapse
|
3
|
Karatrantos AV, Mugemana C, Bouhala L, Clarke N, Kröger M. From Ionic Nanoparticle Organic Hybrids to Ionic Nanocomposites: Structure, Dynamics, and Properties: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:2. [PMID: 36615912 PMCID: PMC9823933 DOI: 10.3390/nano13010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Ionic nanoparticle organic hybrids have been the focus of research for almost 20 years, however the substitution of ionic canopy by an ionic-entangled polymer matrix was implemented only recently, and can lead to the formulation of ionic nanocomposites. The functionalization of nanoparticle surface by covalently grafting a charged ligand (corona) interacting electrostatically with the oppositely charged canopy (polymer matrix) can promote the dispersion state and stability which are prerequisites for property "tuning", polymer reinforcement, and fabrication of high-performance nanocomposites. Different types of nanoparticle, shape (spherical or anisotropic), loading, graft corona, polymer matrix type, charge density, molecular weight, can influence the nanoparticle dispersion state, and can alter the rheological, mechanical, electrical, self-healing, and shape-memory behavior of ionic nanocomposites. Such ionic nanocomposites can offer new properties and design possibilities in comparison to traditional polymer nanocomposites. However, to achieve a technological breakthrough by designing and developing such ionic nanomaterials, a synergy between experiments and simulation methods is necessary in order to obtain a fundamental understanding of the underlying physics and chemistry. Although there are a few coarse-grained simulation efforts to disclose the underlying physics, atomistic models and simulations that could shed light on the interphase, effect of polymer and nanoparticle chemistry on behavior, are completely absent.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Clement Mugemana
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Lyazid Bouhala
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nigel Clarke
- Department of Physics & Astronomy, University of Sheffield, Hicks Buildingv Hounsfield Road, Sheffield S3 7RH, UK
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Chen F, Guo C, Zhou H, Shahzad MW, Liu TX, Oleksandr S, Sun J, Dai S, Xu BB. Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106352. [PMID: 35060295 DOI: 10.1002/smll.202106352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Polymer-based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE-based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one-step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10-3 S cm-1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+ ). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g-1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
Collapse
Affiliation(s)
- Fei Chen
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Changxiang Guo
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Honghao Zhou
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Terence Xiaoteng Liu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Sokolskyi Oleksandr
- Department of Chemical, Polymer and Silicate Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 03056, Kyiv, Ukraine
| | - Jining Sun
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Sheng Dai
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
5
|
Zhang T, Pei X, Zhou Z, Wang L, Lu Y, He G. Design and fabrication of PEO‐HPMC@Ht composite solid‐state electrolytes in all‐solid‐state lithium battery. ELECTROANAL 2022. [DOI: 10.1002/elan.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Volkov VI, Yarmolenko OV, Chernyak AV, Slesarenko NA, Avilova IA, Baymuratova GR, Yudina AV. Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques. MEMBRANES 2022; 12:membranes12040416. [PMID: 35448386 PMCID: PMC9028971 DOI: 10.3390/membranes12040416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
This review is devoted to different types of novel polymer electrolytes for lithium power sources developed during the last decade. In the first part, the compositions and conductivity of various polymer electrolytes are considered. The second part contains NMR applications to the ion transport mechanism. Polymer electrolytes prevail over liquid electrolytes because of their exploitation safety and wider working temperature ranges. The gel electrolytes are mainly attractive. The systems based on polyethylene oxide, poly(vinylidene fluoride-co-hexafluoropropylene), poly(ethylene glycol) diacrylate, etc., modified by nanoparticle (TiO2, SiO2, etc.) additives and ionic liquids are considered in detail. NMR techniques such as high-resolution NMR, solid-state NMR, magic angle spinning (MAS) NMR, NMR relaxation, and pulsed-field gradient NMR applications are discussed. 1H, 7Li, and 19F NMR methods applied to polymer electrolytes are considered. Primary attention is given to the revelation of the ion transport mechanism. A nanochannel structure, compositions of ion complexes, and mobilities of cations and anions studied by NMR, quantum-chemical, and ionic conductivity methods are discussed.
Collapse
Affiliation(s)
- Vitaly I. Volkov
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
- Scientific Center in Chernogolovka RAS, 142432 Chernogolovka, Russia
- Correspondence: or
| | - Olga V. Yarmolenko
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Alexander V. Chernyak
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
- Scientific Center in Chernogolovka RAS, 142432 Chernogolovka, Russia
| | - Nikita A. Slesarenko
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Irina A. Avilova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Guzaliya R. Baymuratova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Alena V. Yudina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| |
Collapse
|
7
|
Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Duan X, Wang CW, Wang T, Xie X, Zhou X, Ye Y. Removal of Metal Ions in Phosphoric Acid by Electro-Electrodialysis with Cross-Linked Anion-Exchange Membranes. ACS OMEGA 2021; 6:32417-32430. [PMID: 34901593 PMCID: PMC8655774 DOI: 10.1021/acsomega.1c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
There are numerous metallic impurities in wet phosphoric acid, which causes striking negative effects on industrial phosphoric acid production. In this study, the purification behavior of metallic impurities (Fe, Mg, Ca) from a wet phosphoric acid solution employing the electro-electrodialysis (EED) technology was investigated. The cross-linked polysulfone anion-exchange membranes (AEMs) for EED were prepared using N,N,N',N'-tetramethyl-1,6-hexanediamine (TMHDA) to achieve simultaneous cross-linking and quaternization without any cross-linkers or catalysts. The performance of the resulting membranes can be determined using quaternization reagents. When the molar ratio of trimethylamine/TMHDA/chloromethylated polysulfone is 3:1:1, the cross-linked membrane CQAPSU-3-1 exhibits lower water swelling and membrane area resistance than the non-cross-linked membrane. The low membrane area resistance of CQAPSU-3-1 with long alkyl chains is obtained due to the hydrophilic-hydrophobic microphase separation structure formed by TMHDA. EED experiments with different initial phosphoric acid concentrations of 0.52 and 1.07 M were conducted to evaluate the phosphoric acid purification of different AEMs. The results show that the EED experiments were more suitable for the purification of wet phosphoric acid solution at low concentrations. It was found that the phosphoric acid concentration in the anode compartment could be increased from 0.52 to 1.04 M. Through optimization, with an initial acid concentration of 0.52 M, CQAPSU-3-1 exhibits an enhanced metallic impurity removal ratio of higher than 72.0%, the current efficiency of more than 90%, and energy consumption of 0.48 kWh/kg. Therefore, CQAPSU-3-1 exhibits much higher purification efficiency than other membranes at a low initial phosphoric acid concentration, suggesting its potential in phosphoric acid purification application.
Collapse
Affiliation(s)
- Xiaoling Duan
- Hubei
Key Laboratory of Purification and Application of Plant Anti-Cancer
Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cun-Wen Wang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Tielin Wang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xiaolin Xie
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingping Zhou
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunsheng Ye
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Shi K, Xu Z, Huang M, Zou L, Zheng D, Yang Z, Zhang W. Solid-state polymer electrolytes with polypropylene separator-reinforced sandwich structure for room-temperature lithium ion batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Nano-silica doped composite polymer chitosan/poly(ethylene oxide)-based electrolyte with high electrochemical stability suitable for quasi solid-state lithium metal batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Zhang Y, Yu L, Wang J, Li S, Gan H, Xue Z. Fabrication of polymer electrolyte via lithium salt-induced surface-initiated radical polymerization for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Yu CH, Cho CS, Li CC. Well-Dispersed Garnet Crystallites for Applications in Solid-State Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11995-12005. [PMID: 33656842 DOI: 10.1021/acsami.0c22915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A uniform ceramic tape of well-dispersed garnet-type Li6.4La3Zr1.4Ta0.6O12 particles (LLZTO) with a high solid content of 70 wt % is prepared as an electrolyte in solid-state Li-S batteries. The use of appropriate dispersants is crucial for achieving fine dispersion and uniform distribution of LLZTO particles in the ceramic tape. This leads to improved surface flatness and mechanical strength of the ceramic tape. Moreover, the ionic conductivity increases remarkably at the same time from 10-5 to 10-4 to 10-4 to 10-3 S cm-1, and the Li+ transport number doubles from 0.35 to 0.70. The Li-S battery constructed with the dispersed LLZTO electrolyte shows an adequate capacity of above 600 mA h g-1 after 100 cycles at a discharge current of 84 mA g-1, and it is capable of charging/discharging at a high current of 1672 mA g-1. In comparison, the battery with a nondispersed LLZTO electrolyte functions only at the lower current of 84 mA g-1 and fails to work after 25 cycles.
Collapse
Affiliation(s)
- Chun-Hung Yu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chuan-Sheng Cho
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chia-Chen Li
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
13
|
Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries. J Colloid Interface Sci 2021; 594:1-8. [PMID: 33744729 DOI: 10.1016/j.jcis.2021.02.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 01/14/2023]
Abstract
This study aims to prepare an organic-inorganic reticular polymer electrolyte. Isocyanate acts as a bridge that connects fumed silica and PEO molecular chains. The PEO-TDI-SiO2 solid polymer electrolytes developed can significantly have improved ionic conductivity of 0.12 mS cm-1 at ambient temperature. This is because the TDI-SiO2 nanoparticles inhibits polymer crystallization which provides more continuous Li-ion transport pathways. Tests at 60 °C indicate that the cross-linked structure of covalent TSI bonded to PEO effectively enlarges the electrochemical window of the polymer electrolyte to 5.6 V. Also, the PTSI electrolyte membrane has a higher Li+ transference number of 0.33 compared to the PEO-LiTFSI electrolytes. It is worth noting that the assembled LiFePO4|PTSI8%|Li cells deliver outstanding rate performance and stable cycling performance. All these considerable merits of PTSI membrane demonstrate that PTSI is a promising candidate that can be used as solid polymer electrolytes for the next-generation Li-ion batteries.
Collapse
|
14
|
Yang W, Li L, Zhang B, Yang Q, Zou H, Zheng W, Chen S. Optimization and Preparation of a Gel Polymer Electrolyte Membrane for Supercapacitors. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Yang
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Linlin Li
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Biao Zhang
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Qianyun Yang
- Environmental Monitoring Station of Guangzhou Development Zone 510700 Guangzhou China
| | - Hanbo Zou
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Wenzhi Zheng
- Guangzhou University Guangzhou Key Laboratory for New Energy and Green Catalysis 510006 Guangzhou China
| | - Shengzhou Chen
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| |
Collapse
|
15
|
Hybridizing polymer electrolyte with poly(ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Hu J, Wang W, Zhu X, Liu S, Wang Y, Xu Y, Zhou S, He X, Xue Z. Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Wen J, Zhang R, Zhao Q, Liu W, Lu G, Hu X, Sun J, Wang R, Jiang X, Hu N, Liu J, Liu X, Xu C. Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54637-54643. [PMID: 33226206 DOI: 10.1021/acsami.0c15692] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid polymer electrolytes with excellent performance at high temperatures are very promising for developing solid-state lithium batteries for high-temperature applications. Herein, we use a self-supporting hydroxyapatite (HAP) nanowire membrane as a filler to improve the performance of a poly(ethylene oxide) (PEO)-based solid-state electrolyte. The HAP membrane could comprehensively improve the properties of the hybrid polymer electrolyte, including the higher room-temperature ionic conductivity of 1.05 × 10-5 S cm-1, broad electrochemical windows of up to 5.9 V at 60 °C and 4.9 V at 160 °C, and a high lithium-ion migration of 0.69. In addition, the LiFePO4//Li full battery with a solid electrolyte possesses good rate capability, cycling, and Coulomb efficiency at extreme high temperatures, that is, after 300 continuous charge and discharge cycles at 4 C rate, the discharge capacity retention rate is 77% and the Coulomb efficiency is 99%. The use of the flexible self-supporting HAP nanowire membrane to improve the PEO-based solid composite electrolyte provides new strategies and opportunities for developing rechargeable lithium batteries in extreme high-temperature applications.
Collapse
Affiliation(s)
- Jie Wen
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Rui Zhang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Qiannan Zhao
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Liu
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Guanjie Lu
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaolin Hu
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jing Sun
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Ronghua Wang
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Xiaoping Jiang
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jilei Liu
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Xingjiang Liu
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China
| | - Chaohe Xu
- College of Aerospace Engineering, and College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Saminathan A, Krishnasamy S, Venkatachalam G. Enhanced Electrochemical Performance of a Silica Bead-Embedded Porous Fluoropolymer Composite Matrix for Li-Ion Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamilnadu, India
| |
Collapse
|
19
|
Gao L, Sarmad B, Li J, Cheng B, Kang W, Deng N. Application of polyamide 6 microfiber non-woven fabrics in the large-scale production of all-solid-state lithium metal batteries. JOURNAL OF POWER SOURCES 2020; 475:228663. [PMID: 32863551 PMCID: PMC7443327 DOI: 10.1016/j.jpowsour.2020.228663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 05/09/2023]
Abstract
All-solid-state electrolytes have received extensive attention due to their excellent safety and good electrochemical performance. However, due to the harsh conditions of the preparation process, the commercial production of all-solid-state electrolytes remains a challenge. The outbreak of the novel coronavirus pneumonia (COVID-19) has caused great inconvenience to people, while also allowing soft, lightweight and mass-producible non-woven fabrics in masks come into sight. Here, a polymer/polymer solid composite electrolyte is obtained by introducing the polyamide 6 (PA6) microfiber non-woven fabric into PEO polymer through the hot-pressing method. The addition of the PA6 non-woven fabric with lithium-philic properties can not only reduce the crystallinity of the polymer, but also provide more functional transmission sites and then promote the migration of lithium ions at the molecular level. Moreover, due to the sufficient mechanical strength and flexibility of the PA6 non-woven fabric, the composite electrolyte shows excellent inhibition ability of lithium dendrite growth and high electrochemical stability. The novel design concept of introducing low-cost and large-scale production of non-woven fabrics into all-solid-state composite electrolytes to develop high-performance lithium metal batteries is attractive, and can also be broadened to the combination of different types of polymers to meet the needs of various batteries.
Collapse
Affiliation(s)
- Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bushra Sarmad
- School of International Education, Tiangong University, Tianjin 300387, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| |
Collapse
|
20
|
Luo K, Shao D, Yang L, Liu L, Chen X, Zou C, Wang D, Luo Z, Wang X. Semi‐interpenetrating gel polymer electrolyte based on
PVDF‐HFP
for lithium ion batteries. J Appl Polym Sci 2020. [DOI: 10.1002/app.49993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaili Luo
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Dingsheng Shao
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Li Yang
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Lei Liu
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Xiaoyi Chen
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Changfei Zou
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Dong Wang
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Zhigao Luo
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| | - Xianyou Wang
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry, Xiangtan University Xiangtan China
| |
Collapse
|
21
|
Fedeli E, Garcia-Calvo O, Thieu T, Phan TN, Gigmes D, Urdampilleta I, Kvasha A. Nanocomposite solid polymer electrolytes based on semi-interpenetrating hybrid polymer networks for high performance lithium metal batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Jiang K, Wang J, Zuo C, Li S, Li S, He D, Peng H, Xie X, Poli R, Xue Z. Facile Fabrication of Polymer Electrolytes via Lithium Salt-Accelerated Thiol-Michael Addition for Lithium-Ion Batteries. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ke Jiang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sibo Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dan He
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rinaldo Poli
- LCC (Laboratoire de Chimie de Coordination) CNRS, UPS, INPT, Université de Toulouse, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
23
|
Li S, Xiao Z, Guo K, Gan H, Wang J, Zhang Y, Yu L, Xue Z. Stabilizing Liquid Electrolytes in a Porous PVDF Matrix Incorporated with Star Polymers with Linear PEG Arms and CycloPEG Cores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9616-9625. [PMID: 32787134 DOI: 10.1021/acs.langmuir.0c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous membranes fabricated from poly(vinylidene fluoride) (PVDF) and a star polymer with linear poly(ethylene glycol) (PEG) arms and cycloPEG cores were fabricated via the phase-separation method. The porous gel polymer electrolytes (PGPEs) were obtained by immersing the porous membranes in the electrolyte solution. When the additive amount of star polymer was up to 20 wt %, the prepared membrane had the largest porosity and the pores were uniformly distributed in the membrane. The star polymer can not only decrease the crystallization of PVDF and enhance the absorption of liquid electrolyte but also offer ion conduction channels (cycloPEG cores). Therefore, the PGPE with 20 wt % star polymers exhibited competitive ionic conductivities of 1.27 mS cm-1 at 30 °C and 2.89 mS cm-1 at 80 °C. To stabilize the liquid electrolyte in the holes of porous membranes, a gelator was introduced in the liquid electrolyte to form gelled porous gel polymer electrolytes (GPGPEs), and the leakage of liquid electrolytes was thus remarkably reduced. The ionic conductivity of GPGPEs with 20 wt % star polymer and 1.5 wt % gelator was importantly improved at high temperatures (6.02 mS cm-1 at 80 °C). We systematically investigated the electrochemical performances of PGPEs without star polymer, PGPEs with star polymer, and GPGPEs with star polymer. The incorporation of star polymers with linear PEG arms and cycloPEG cores into the PGPEs and GPGPEs significantly improved the electrochemical performances of the lithium metal/LiFePO4 cell assembled with the PGPEs or GPGPEs.
Collapse
Affiliation(s)
- Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuliu Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kairui Guo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huihui Gan
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liping Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Li S, Zuo C, Jo YH, Li S, Jiang K, Yu L, Zhang Y, Wang J, Li L, Xue Z. Enhanced ionic conductivity and mechanical properties via dynamic-covalent boroxine bonds in solid polymer electrolytes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Gao L, Li J, Sarmad B, Cheng B, Kang W, Deng N. A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries. NANOSCALE 2020; 12:14279-14289. [PMID: 32609141 DOI: 10.1039/d0nr04244g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-solid-state polymer electrolytes have received widespread attention due to their superior safety over liquid electrolytes that are prone to leaks. However, poor ionic conductivity and uncontrollable lithium dendrite growth have greatly limited the rapid development of polymer electrolytes. Hence, we report a composite polymer electrolyte combining a polyacrylonitrile (PAN) electrospun fiber membrane, flexible polydimethylsiloxane (PDMS) macromolecules and a polyethylene oxide (PEO) polymer. The introduction of PDMS with a highly flexible molecular chain, ultra-low glass transition energy and high free volume can help optimize lithium ion migration paths and improve the interface compatibility between the electrolyte and the electrode. In addition, the nano-network structure of the PAN nanofiber membrane can promote the interaction between adjacent polymer molecular chains and improve the mechanical properties of the composite electrolyte to suppress the lithium dendrite growth. The synergistic effect of the PDMS and PAN electrospun nanofiber membranes endows the composite electrolyte with superior ionic conductivity and excellent electrochemical stability towards lithium metal. The interface impedance of the Li/Li symmetric battery with the composite electrolyte after 15 days of continuous standing has no significant change compared with the initial state, and the battery can maintain stable cycling for 1200 h without short circuit under a dynamic current of 0.3 mA cm-2. The obtained composite polymer electrolyte has potential application prospects in the field of high-energy lithium metal batteries.
Collapse
Affiliation(s)
- Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China. and School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Bushra Sarmad
- School of International Education, Tiangong University, Tianjin 300387, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China. and School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China. and School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
26
|
S. J, B. S. Influence of nano SrTiO3 and ultrasonic irradiation on the properties of polymer blend electrolytes. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1784220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jayanthi S.
- Department of Physics, The Standard Fireworks Rajaratnam College for Women, Sivakasi, India
| | - Sundaresan B.
- Centre for Research and Post – Graduate Studies in Physics, Ayya Nadar Janaki Ammal College, Sivakasi, India
| |
Collapse
|
27
|
Zuo C, Chen G, Zhang Y, Gan H, Li S, Yu L, Zhou X, Xie X, Xue Z. Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Wang Z, Liu J, Wang M, Shen X, Qian T, Yan C. Toward safer solid-state lithium metal batteries: a review. NANOSCALE ADVANCES 2020; 2:1828-1836. [PMID: 36132504 PMCID: PMC9419882 DOI: 10.1039/d0na00174k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/08/2020] [Indexed: 05/06/2023]
Abstract
The solid-state lithium metal battery (SSLMB) is one of the most optimal solutions to pursue next-generation energy storage devices with superior energy density, in which solid-state electrolytes (SSEs) are expected to completely solve the safety problems caused by direct use of a lithium metal anode. Most previous work has mainly focused on improving the electrochemical performance of SSLMBs, but the safety issues have been largely ignored due to the influence of the stereotype that batteries with SSEs are always safe. In the actual research process, however, some potential dangers of SSLMBs have been gradually revealed, so extra attention should be paid to this issue. This minireview summarizes several aspects that could raise safety concerns and provides a brief overview of the corresponding solutions to each aspect. Finally, general conclusions and perspectives on the research of SSLMBs with ultra-high safety are presented.
Collapse
Affiliation(s)
- Zhenkang Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Jie Liu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Mengfan Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Xiaowei Shen
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Tao Qian
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Chenglin Yan
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| |
Collapse
|
29
|
Zhou B, Yang M, Zuo C, Chen G, He D, Zhou X, Liu C, Xie X, Xue Z. Flexible, Self-Healing, and Fire-Resistant Polymer Electrolytes Fabricated via Photopolymerization for All-Solid-State Lithium Metal Batteries. ACS Macro Lett 2020; 9:525-532. [PMID: 35648507 DOI: 10.1021/acsmacrolett.9b01024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cyclophosphazene-based self-healing polymer electrolytes (CPSHPE) is designed and fabricated via the copolymerization of hexa(4-ethyl acrylate phenoxy) cyclotriphosphazene (HCP), (2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate) (UPyMA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) under UV irradiation. The cross-linking structure formed by HCP could effectively enhance the mechanical strength of the polymer electrolyte, and the cyclotriphosphazene as the core is able to improve the flame-retardant properties. Benefiting from the phenyl groups in HCP and the cross-linking structure, the CPSHPE shows high thermal stability (up to 300 °C). On the other hand, the supramolecular network fabricated by the dynamic ureido-pyrimidinone (UPy) dimers endows the polymer electrolyte with good self-healing capability and is expected to improve the reliability of polymer lithium batteries. Moreover, the cells were fabricated with LiFePO4 (LFP), CPSHPE, and Li anodes show good reversible specific capacity. The CPSHPE could be a promising candidate as the multifunctional polymer electrolyte to improve the safety performance of lithium metal batteries.
Collapse
Affiliation(s)
- Binghua Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Institute of Advanced Materials (IAM), Jiangxi Normal University, Nanchang 330022, China
| | - Mengling Yang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gong Chen
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan He
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingping Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengmei Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
30
|
Poly (Ethylene Oxide)-Based Block Copolymer Electrolytes Formed via Ligand-Free Iron-Mediated Atom Transfer Radical Polymerization. Polymers (Basel) 2020; 12:polym12040763. [PMID: 32244569 PMCID: PMC7240491 DOI: 10.3390/polym12040763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
The Br-terminated poly (ethylene oxide) (PEO-Br) is used as a green and efficient macroinitiator in bulk Fe-catalyzed atom transfer radical polymerization (ATRP) without the addition of any organic ligands. The polymerization rate is able to be mediated by PEO-Br with various molecular weights, and the decrease in redox potential of FeBr2 in cyclic voltammetry (CV) curves indicates that an increased coordination effect is deteriorated with the depressing reaction activity in the longer ethylene oxide (EO) chain in PEO-Br. In combination with the study of different catalysts and catalytic contents, the methyl metharylate (MMA) or poly (ethylene glycol) monomethacrylate (PEGMA) was successfully polymerized with PEO-Br as an initiator. This copolymer obtained from PEGMA polymerization can be further employed as a polymer matrix to form the polymer electrolyte (PE). The higher ionic conductivity of PE was obtained by using a high molecular weight of copolymer.
Collapse
|
31
|
The polymerization capability of alkenyl phosphates and application as gel copolymer electrolytes for lithium ion batteries with high flame-retardancy. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Ai S, Wang T, Li T, Wan Y, Xu X, Lu H, Qu T, Luo S, Jiang J, Yu X, Zhou D, Li L. A Chitosan/Poly(ethylene oxide)‐Based Hybrid Polymer Composite Electrolyte Suitable for Solid‐State Lithium Metal Batteries. ChemistrySelect 2020. [DOI: 10.1002/slct.202000260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shun Ai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| | - Tianyi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Tao Li
- Neutron Scattering Technical Engineering Research Center & School of Mechanical EngineeringDongguan University of Technology Dongguan 523808 China
| | - Yuanxin Wan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Xiaoqian Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Hongyan Lu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Tengfei Qu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Shaochuan Luo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Jing Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Xianghua Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shenzhen R&D Center, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology, MOENanjing University Nanjing 210023 China
| | - Liang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 PR China
| |
Collapse
|
33
|
Xie Z, Wu Z, An X, Yue X, Xiaokaiti P, Yoshida A, Abudula A, Guan G. A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Cha JH, Didwal PN, Kim JM, Chang DR, Park CJ. Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117538] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Zuo C, Zhou B, Jo YH, Li S, Chen G, Li S, Luo W, He D, Zhou X, Xue Z. Facile fabrication of a hybrid polymer electrolyte via initiator-free thiol–ene photopolymerization for high-performance all-solid-state lithium metal batteries. Polym Chem 2020. [DOI: 10.1039/d0py00203h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The article reports the facile fabrication of a solid polymer electrolyte via initiator-free thiol–ene photopolymerization for all-solid-state lithium metal batteries.
Collapse
|
36
|
Li S, Zuo C, Zhang Y, Wang J, Gan H, Li S, Yu L, Zhou B, Xue Z. Covalently cross-linked polymer stabilized electrolytes with self-healing performance via boronic ester bonds. Polym Chem 2020. [DOI: 10.1039/d0py00728e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article reported a facile fabrication of self-healing solid polymer electrolytes via boronic ester bonds.
Collapse
Affiliation(s)
- Sibo Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Huihui Gan
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Liping Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Binghua Zhou
- Institute of Advanced Materials (IAM)
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
37
|
Chen P, Liu X, Wang S, Zeng Q, Wang Z, Li Z, Zhang L. Confining Hyperbranched Star Poly(ethylene oxide)-Based Polymer into a 3D Interpenetrating Network for a High-Performance All-Solid-State Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43146-43155. [PMID: 31647215 DOI: 10.1021/acsami.9b14346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The original poly(ethylene oxide)-based polymer electrolytes normally show low ionic conductivity and inferior mechanical property, which greatly restrict their practical application in all-solid-state lithium-ion batteries (LIBs). In this work, a hyperbranched star polymer with poly(ethylene glycol) methyl ether methacrylate flexible chain segments is embedded into a three-dimensional (3D) interpenetrating cross-linking network created by the rapid one-step UV-derived photopolymerization of the cross-linker (ethoxylated trimethylolpropane triacrylate) in the presence of lithium salt. The rigid 3D network framework provides the polymer electrolyte with not only enhanced mechanical behavior, including film-forming and dendrite-inhibiting capabilities, but also nanoconfinement effects, which can speed up polymer chain segmental dynamics and reduce the crystallinity of the polymer. Depending on this unique rigid-flexible coupling network, the prepared solid polymer electrolyte shows enhanced ionic conductivity (6.8 × 10-5 S cm-1 at 50 °C), widened electrochemical stability window (5.1 V vs Li/Li+), and enough mechanical stability to suppress the growth of uneven Li dendrite (the Li symmetrical cells can operate steadily at both current densities of 0.05 and 0.1 mA cm-2 for 1000 h). Moreover, the assembled LiFePO4//Li cell also exhibited good cycle performance at 50 °C, making the hyperbranched star polymer electrolyte with a nanoconfined cross-linking structure to have potential application in high-safety and high-performance LIBs.
Collapse
Affiliation(s)
- Pingping Chen
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu Liu
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shi Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qinghui Zeng
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhinan Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zengxi Li
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liaoyun Zhang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
38
|
Xie Z, Wu Z, An X, Yoshida A, Wang Z, Hao X, Abudula A, Guan G. Bifunctional ionic liquid and conducting ceramic co-assisted solid polymer electrolyte membrane for quasi-solid-state lithium metal batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Ionic conductivity promotion of polymer membranes with oxygen-ion conducting nanowires for rechargeable lithium batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Xiao Z, Zhou B, Wang J, Zuo C, He D, Xie X, Xue Z. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Jo YH, Zhou B, Jiang K, Li S, Zuo C, Gan H, He D, Zhou X, Xue Z. Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix. Polym Chem 2019. [DOI: 10.1039/c9py01406c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article reports PVA-based electrolytes with supramolecular networks formed via quadruple hydrogen bonding for lithium-ion batteries.
Collapse
Affiliation(s)
- Ye Hyang Jo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Binghua Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Ke Jiang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Huihui Gan
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan He
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Xingping Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|