1
|
Yu Y, Zeng Q, Zhang H, Ao M, Yao J, Yang C, Velizarov S, Han L. Graphene Oxide/Polyethyleneimine-Modified Cation Exchange Membrane for Efficient Selective Recovery of Ammonia Nitrogen from Wastewater. MEMBRANES 2023; 13:726. [PMID: 37623787 PMCID: PMC10456636 DOI: 10.3390/membranes13080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Competition for the migration of interfering cations limits the scale-up and implementation of the Donnan dialysis process for the recovery of ammonia nitrogen (NH4+-N) from wastewater in practice. Highly efficient selective permeation of NH4+ through a cation exchange membrane (CEM) is expected to be modulated via tuning the surface charge and structure of CEM. In this work, a novel CEM was designed to form a graphene oxide (GO)-polyethyleneimine (PEI) cross-linked layer by introducing self-assembling layers of GO and PEI on the surface of a commercial CEM, which rationally regulates the surface charge and structure of the membrane. The resulting positively charged membrane surface exhibits stronger repulsion for divalent cations compared to monovalent cations according to Coulomb's law, while, simultaneously, GO forms π-metal cation conjugates between metal cations (e.g., Mg2+ and Ca2+), thus limiting metal cation transport across the membrane. During the DD process, higher NH4+ concentrations resulted in a longer time to reach Donnan equilibrium and higher NH4+ flux, while increased Mg2+ concentrations resulted in lower NH4+ flux (from 0.414 to 0.213 mol·m-2·h-1). Using the synergistic effect of electrostatic interaction and non-covalent cross-linking, the designed membrane, referred to as GO-PEI (20) and prepared by a 20 min impregnation in the GO-PEI mixture, exhibited an NH4+ transport rate of 0.429 mol·m-2·h-1 and a Mg2+ transport rate of 0.003 mol·m-2·h-1 in single-salt solution tests and an NH4+/Mg2+ selectivity of 15.46, outperforming those of the unmodified and PEI membranes (1.30 and 5.74, respectively). In mixed salt solution tests, the GO-PEI (20) membrane showed a selectivity of 15.46 (~1.36, the unmodified membrane) for NH4+/Mg2+ and a good structural stability after 72 h of continuous operation. Therefore, this facile surface charge modulation approach provides a promising avenue for achieving efficient NH4+-selective separation by modified CEMs.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Qin Zeng
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Haoquan Zhang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Maoqin Ao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Chun Yang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Svetlozar Velizarov
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| |
Collapse
|
2
|
Yang J, Chen Q, Afsar NU, Ge L, Xu T. Poly(alkyl-biphenyl pyridinium)-Based Anion Exchange Membranes with Alkyl Side Chains Enable High Anion Permselectivity and Monovalent Ion Flux. MEMBRANES 2023; 13:188. [PMID: 36837691 PMCID: PMC9967815 DOI: 10.3390/membranes13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Poly(alkyl-biphenyl pyridinium)-based anion exchange membranes with alkyl side chains were synthesized for permselective anion separation. By altering the length of the grafted side chain, the hydrophilicity and other attributes of the membranes could be controlled. The QDPAB-C5 membrane with the best comprehensive performance exhibited a Cl- ion flux of 3.72 mol m-2 h-1 and a Cl-/SO42- permselectivity of 15, which are significantly better than the commercial Neosepta ACS membrane. The QDPAB-C5 membranes with distinct microscopic phase separation structures formed interconnected hydrophilic/hydrophobic ion channels and exhibited excellent ion flux and permselectivity for other anionic systems (NO3-/SO42-, Br-/SO42-, F-/SO42-, NO3-/Cl-, Br-/Cl-, and F-/Cl-) as well. Furthermore, the influence of alkyl side chain length on the membranes' ion flux and permselectivity in electrodialysis was investigated, which may be attributed to the alterations in ion channels and hydrophobic regions of the membranes. This work provides an effective strategy for the development of monovalent anion permselective membranes.
Collapse
Affiliation(s)
- Jin Yang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qian Chen
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ionic liquid-based pore-filling anion-exchange membranes enable fast large-sized metallic anion migration in electrodialysis. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Designing monovalent selective anion exchange membranes for the simultaneous separation of chloride and fluoride from sulfate in an equimolar ternary mixture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Enhanced monovalent anion selectivity of poly(2,6-dimethyl-1,4-phenylene oxide)-based amphoteric ion exchange membranes having rough surface. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ruan H, Yu L, Yao Y, Li J, Yan J, Liao J, Shen J. Poly(Vinyl Alcohol)-Based Anion Exchange Membranes with Improved Antifouling Potentials and Reduced Swelling Ratios for Electrodialysis Application. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianlang Yan
- Shaoxing Zhongchang Chemical Co., Ltd., Shaoxing 312000, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
8
|
Yu S, Qian H, Liao J, Dong J, Yu L, Liu C, Shen J. Proton blockage PVDF-co-HFP-based anion exchange membrane for sulfuric acid recovery in electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Imparting antibacterial adhesion property to anion exchange membrane by constructing negatively charged functional layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Chen W, Dong T, Xiang Y, Qian Y, Zhao X, Xin W, Kong XY, Jiang L, Wen L. Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108410. [PMID: 34750892 DOI: 10.1002/adma.202108410] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Charge-governed ion transport is crucial to numerous industries, and the advanced membrane is the essential component. In nature, the efficient and selective ion transport is mainly governed by the charged ion channels located in cell membrane, indicating the architecture with functional differentiation. Inspired by this architecture, a membrane by ionic crosslinking sulfonated poly(arylene ether ketone) and imidazolium-functionalized poly(arylene ether sulfone) is designed and fabricated to make full use of the charges. This ionic crosslinking is designed to realize nanophase separation to aggregate the ion pathways in the membrane, which results in excellent ion selectivity and high ion conductivity. With the excellent ion transport behavior, ionic crosslinking membrane shows great potential in osmotic energy conversion, which maximum power density can be up to 16.72 W m-2 . This design of ionic crosslinking-induced nanophase separation offers a roadmap for ion transport promotion.
Collapse
Affiliation(s)
- Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tiandu Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yun Xiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaolu Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Afsar NU, Li X, Zhu Y, Ge Z, Zhou Y, Zhao Z, Hussain A, Ge L, Fu R, Liu Z, Xu T. In‐situ interfacial polymerization endows surface enrichment of
COOH
groups on anion exchange membranes for efficient Cl
−
/
SO
4
2
−
separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Zijuan Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yue Zhou
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology University of Science and Technology of China Hefei People's Republic of China
| | - Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Arif Hussain
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology University of Science and Technology of China Hefei People's Republic of China
| | - Rongqiang Fu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd., The Hi‐tech Zone Weifang People's Republic of China
| | - Zhaoming Liu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd., The Hi‐tech Zone Weifang People's Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
12
|
Shen P, Liao J, Chen Q, Ruan H, Shen J. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Qiu ZL, Fang LF, Shen YJ, Yu WH, Zhu BK, Hélix-Nielsen C, Zhang W. Ionic Dendrimer Based Polyamide Membranes for Ion Separation. ACS NANO 2021; 15:7522-7535. [PMID: 33779134 DOI: 10.1021/acsnano.1c00936] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Separating low/high-valent ions with sub-nanometer sizes is a crucial yet challenging task in various areas (e.g., within environmental, healthcare, chemical, and energy engineering). Satisfying high separation precision requires membranes with exceptionally high selectivity. One way to realize this is constructing well-designed ion-selective nanochannels in pressure-driven membranes where the separation mechanism relies on combined steric, dielectric exclusion, and Donnan effects. To this aim, charged nanochannels in polyamide (PA) membranes are created by incorporating ionic polyamidoamine (PAMAM) dendrimers via interfacial polymerization. Both sub-10 nm sizes of the ionic PAMAM dendrimer molecules and their gradient distributions in the PA nanofilms contribute to the successful formation of defect-free PA nanofilms, containing both internal (intramolecular voids) and external (interfacial voids between the ionic PAMAM dendrimers and the PA matrix) nanochannels for fast transport of water molecules. The external nanochannels with tunable ionizable groups endow the PA membranes with both high low/high-valent co-ion selectivity and chemical cleaning tolerance, while the ion sieving/transport mechanism was analyzed by employing the Donnan steric pore model with dielectric exclusion.
Collapse
Affiliation(s)
- Ze-Lin Qiu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Li-Feng Fang
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-Jie Shen
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Han Yu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bao-Ku Zhu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Claus Hélix-Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs., Lyngby, Denmark
- Laboratory for Water Biophysics and Membrane Processes, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
14
|
Ruan H, Pan N, Wang C, Yu L, Liao J, Shen J. Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nengxiu Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
15
|
A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Li M, Li W, Zhang X, Wu C, Han X, Chen Y. Polyvinyl alcohol-based monovalent anion selective membranes with excellent permselectivity in selectrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Yu S, Zhu J, Liao J, Ruan H, Sotto A, Shen J. Homogeneous trimethylamine-quaternized polysulfone-based anion exchange membranes with crosslinked structure for electrodialysis desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
|
20
|
Ahmad M, Yaroshchuk A, Bruening ML. Moderate pH changes alter the fluxes, selectivities and limiting currents in ion transport through polyelectrolyte multilayers deposited on membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Liao J, Chen Q, Pan N, Yu X, Gao X, Shen J, Gao C. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Chaudhury S, Nir O. Electro-Enhanced Membrane Sorption: A New Approach for Selective Ion Separation and Its Application to Phosphate and Arsenic Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sanhita Chaudhury
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba 8499000, Israel
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba 8499000, Israel
| |
Collapse
|
23
|
Liao J, Yu X, Chen Q, Gao X, Ruan H, Shen J, Gao C. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains: Investigating the effect of hydrophobic alkyl spacer length. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117818] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Xu Y, Peng G, Liao J, Shen J, Gao C. Preparation of molecular selective GO/DTiO2-PDA-PEI composite nanofiltration membrane for highly pure dye separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117727] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Sheng F, Hou L, Wang X, Irfan M, Shehzad MA, Wu B, Ren X, Ge L, Xu T. Electro-nanofiltration membranes with positively charged polyamide layer for cations separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117453] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Hao L, Wang C, Chen Q, Yu X, Liao J, Shen J, Gao C. A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|