1
|
Acarer-Arat S, Pir İ, Tüfekci M, Güneş-Durak S, Akman A, Tüfekci N. Heavy Metal Rejection Performance and Mechanical Performance of Cellulose-Nanofibril-Reinforced Cellulose Acetate Membranes. ACS OMEGA 2024; 9:42159-42171. [PMID: 39431085 PMCID: PMC11483397 DOI: 10.1021/acsomega.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
In this research, cellulose acetate (CA) and CA nanocomposite membranes, reinforced with mass fractions of cellulose nanofibrils (CNF), are prepared using the phase separation technique. The membranes are extensively characterized using several techniques: Fourier Transform Infrared (FTIR) spectroscopy confirms the chemical structures, while Scanning Electron Microscopy (SEM) reveals their surface morphology. Mechanical characterization is conducted to explore the mechanical behavior of the membranes under wet and dry conditions through tensile testing. The mechanical properties of CA and CA-CNF membranes are also estimated using the Mori-Tanaka mean-field homogenization method and compared to experimental findings. The flux performance for pure and dam water, assessed at 3 bar, demonstrates that CNF reinforcement notably enhances the CA membrane's performance, particularly in flux rate and fouling resistance. The CA membrane shows high efficiency in removing Fe2+, Ba2+, and Al3+ from dam water, while CA-CNF membranes exhibit a varied range of removal efficiencies for the same ions, with the 0.5 wt % CNF variant showing superior resistance to surface fouling. Additionally, while CNF increases tensile strength and stiffness, it leads to earlier failure under smaller deformations, especially at higher concentrations. This research provides a detailed assessment of CA and CA-CNF membranes, examining their chemical, structural, and mechanical properties alongside their effectiveness in water treatment applications.
Collapse
Affiliation(s)
- Seren Acarer-Arat
- Istanbul
University-Cerrahpaşa, Faculty of Engineering, Department of Environmental Engineering, Avcilar, 34320 Istanbul, Turkey
| | - İnci Pir
- Istanbul
Technical University, Faculty of Mechanical
Engineering, Gumussuyu, Istanbul 34437, Turkey
| | - Mertol Tüfekci
- Centre
for Engineering Research, University of
Hertfordshire, Hatfield, Hertfordshire AL10 9AB, United Kingdom
- School
of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, United Kingdom
| | - Sevgi Güneş-Durak
- Nevsehir
Haci Bektas Veli University, Department of Environmental Engineering, Faculty of Engineering-Architecture, Nevsehir 50300, Turkey
| | - Alp Akman
- Istanbul
University-Cerrahpaşa, Faculty of Engineering, Department of Environmental Engineering, Avcilar, 34320 Istanbul, Turkey
| | - Neşe Tüfekci
- Istanbul
University-Cerrahpaşa, Faculty of Engineering, Department of Environmental Engineering, Avcilar, 34320 Istanbul, Turkey
| |
Collapse
|
2
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Li C, Zhen W. Preparation, performance and structure-properties relationship of polyphenylene sulfide/ATP-PS/co-deposition of tannic acid nanocomposites membrane. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Tang S, Jiao Y, Yan F, Qin Q, Qin S, Ma X, Li J, Cui Z. Construction of hollow fiber nanofiltration separation layer with bridging network structure by polymer-anchored co-deposition for high-concentration heavy metal ion removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Moradi G, Rahimi M, Zinadini S, Hadidi S. Fabrication of the polyethersulfone/functionalized mesoporous carbon nanocomposite nanofiltration membrane for dyes and heavy metal ions removal: Experimental and quantum mechanical simulation method. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Golshan Moradi
- Department of Chemical Engineering, Faculty of Engineering Razi University Kermanshah Iran
- Membrane Research Division, Advanced Chemical Engineering Research Center Razi University Kermanshah Iran
| | - Masoud Rahimi
- Department of Chemical Engineering, Faculty of Engineering Razi University Kermanshah Iran
- Membrane Research Division, Advanced Chemical Engineering Research Center Razi University Kermanshah Iran
| | - Sirus Zinadini
- Environmental Research Center, Department of Applied Chemistry Razi University Kermanshah Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| |
Collapse
|
6
|
Bai Y, Gao P, Fang R, Cai J, Zhang LD, He QY, Zhou ZH, Sun SP, Cao XL. Constructing positively charged acid-resistant nanofiltration membranes via surface postgrafting for efficient removal of metal ions from electroplating rinse wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhang X, Zheng J, Jin P, Xu D, Yuan S, Zhao R, Depuydt S, Gao Y, Xu ZL, Van der Bruggen B. A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129010. [PMID: 35500345 DOI: 10.1016/j.jhazmat.2022.129010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal ions in drinking water severely threaten public health in various places worldwide. Nanofiltration (NF) membrane technology is an attractive option for heavy metal ions removal; however, improving NF membrane filtration performance is required to make their industrial application viable. In this study, a positively charged THPC/PEI-TMC NF membrane was designed via simple one-step incorporation of Tetrakis (hydroxymethyl) phosphonium chloride (THPC) biocide on the surface of PEI-TMC membranes, significantly optimizing surface morphology, roughness, hydrophilicity, and zeta potential of PEI-TMC membranes. It was found that the pure water permeability (11.6 Lm-2h-1bar-1) of the THPC modified membrane was three times larger than that of the original PEI-TMC membrane (3.4 Lm-2h-1bar-1) while maintaining a high level of ion rejections (around 95% for Zn2+, Cd2+, Ni2+, Cu2+ and about 90% for Pb2+). Additionally, the incorporation of the THPC on the original PEI-TMC membrane surface also conferred good antibacterial properties, which protect the organic membrane from bacterial growth and prolong the lifespan of the membrane.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Daliang Xu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin, 1550090, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Stef Depuydt
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Yujie Gao
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
8
|
Zhu M, Chao Z, Yang H, Xu Z, Cheng C. Improved dye and heavy metal ions removal in saline solutions by electric field-assisted gravity driven filtration using nanofiber membranes with asymmetric micro/nano channels. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wu ZJ, Li HX, Li PP, Xu ZL, Zhan ZM, Wu YZ. Thin-Film Composite Nanofiltration Membrane Modified by Fulvic Acid to Enhance Permeability and Antifouling Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhao-Jun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hua-Xiang Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ping-Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Sousa MU, Rodrigues AM, Araujo MEB, Menezes RR, Neves GA, Lira HL. Adsorption of Sodium Diclofenac in Functionalized Palygoskite Clays. MATERIALS 2022; 15:ma15082708. [PMID: 35454400 PMCID: PMC9028255 DOI: 10.3390/ma15082708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022]
Abstract
The effects of acid and organo-functionalizations on the surface of Brazilian palygorskite clay was investigated, evaluating its potential in the adsorptive capacity of the drug sodium diclofenac present in wastewaters. The modifications on the clay structure were investigated by X-ray diffraction, X-ray fluorescence, thermogravimetric, differential thermal analysis, Fourier transform infrared spectroscopy, surface area by N2 adsorption (77.5 K) and Zeta potential. The experimental design was carried out to find the best conditions for the adsorption tests, in which concentration, mass and pH were significant. In the kinetic study, the pseudo-second-order model better described the adsorption process for acid and organo-functionalized samples. Such results indicate that the adsorption behavior probably occurs due to the phenomenon of chemisorption. Regarding the adsorption isotherms, the Langmuir model was the one that best adjusted both the experimental data of acid and the organo-functionalized samples, whose maximum adsorption capacity were 179.88 and 253.34 mg/g, respectively. This model also indicates that the sodium diclofenac is adsorbed to monolayers homogeneously through chemisorption. In general, the studied clays proved to be suitable adsorbents for the removal of sodium diclofenac.
Collapse
Affiliation(s)
- Matheus Urtiga Sousa
- Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
- Correspondence:
| | - Alisson Mendes Rodrigues
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| | - Maria Eduarda Barbosa Araujo
- Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| | - Hélio Lucena Lira
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (A.M.R.); (R.R.M.); (G.A.N.); (H.L.L.)
| |
Collapse
|
11
|
Homocianu M, Pascariu P. High-performance photocatalytic membranes for water purification in relation to environmental and operational parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114817. [PMID: 35276562 DOI: 10.1016/j.jenvman.2022.114817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Growing technologies, increasing population and environmental pollution lead to severe contamination of water and require advanced water treatment technologies. These aspects lead to the need to purify water with advanced smart materials. This paper reviews the recent advances (during the last 5 years) in photocatalytic composite membranes used for water treatment. For this purpose, the authors have reviewed the main materials used in the development of (photocatalytic membranes) PMs, environmental and operational factors affecting the performance of photocatalytic membranes, and the latest developments and applications of PMs in water purifications. The composite photocatalytic membranes show good performance in the removal and degradation of pollutants from water.
Collapse
Affiliation(s)
- Mihaela Homocianu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Petronela Pascariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
12
|
Jin P, Mattelaer V, Yuan S, Bassyouni M, Simoens K, Zhang X, Ceyssens F, Bernaerts K, Dewil R, Van der Bruggen B. Hydrogel supported positively charged ultrathin polyamide layer with antimicrobial properties via Ag modification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wang R, Hu QH, Wang QY, Xiang YL, Huang SH, Liu YZ, Li SY, Chen QL, Zhou QH. Efficiently selective removal of Pb(II) by magnetic ion-imprinted membrane based on polyacrylonitrile electro-spun nanofibers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Triethanolamine modification produces ultra-permeable nanofiltration membrane with enhanced removal efficiency of heavy metal ions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Wen X, He C, Hai Y, Ma R, Sun J, Yang X, Qi Y, Wei H, Chen J. Fabrication of an antifouling PES ultrafiltration membrane via blending SPSF. RSC Adv 2022; 12:1460-1470. [PMID: 35425199 PMCID: PMC8979071 DOI: 10.1039/d1ra06354e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Sulfonated polysulfone (SPSF) with different sulfonation degrees (10%, 30%, and 50%) was added to polyethersulfone (PES) to improve the separation and antifouling performance of polyethersulfone ultrafiltration membranes. The PES/SPSF blend ultrafiltration membrane was prepared by the non-solvent induced phase inversion method (NIPS), and the effect of sulfonation degree on the ultrafiltration performance was studied. The compatibility of SPSF and PES was calculated by the group contribution method, and confirmed by differential scanning calorimetry (DSC). The morphology and surface roughness of the membrane were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), the chemical composition of the membrane was analyzed by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR), and the permeability and anti-fouling performance of the blend membrane were studied through filtration experiments. The research shows that the flux and anti-fouling performance of the blend membrane have been improved after adding SPSF. When the sulfonation degree of the SPSF is 30%, the pure water flux of the blend membrane can reach 530 L m−2 h−1, the rejection rate of humic acid (HA) is 93%, the flux recovery rate of HA increases from 69.23% to 79.17%, and the flux recovery rate of BSA increases from 72.56% to 83%. The chemical structures of (a) PES and (b) SPSF.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
16
|
Polyamide Nanofiltration Membrane from Surfactant-assembly Regulated Interfacial Polymerization of 2-Methylpiperazine for Divalent Cations Removal. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1430-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zou X, Li M, Xiao H, Zhou S, Chen C, Zhao Y. Simulation study on real laminar assembly of g-C3N4 high performance free standing membrane with bio-based materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Rahimi M, Hassanzadeh Tabrizi SA, Aminsharei F. Fabrication and antibacterial properties of TFC membrane modified with cellulose/copper oxide nanoparticles for removal of cadmium from water. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2002893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maryam Rahimi
- Department of Safety Health and Environment, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S. A. Hassanzadeh Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farham Aminsharei
- Department of Safety Health and Environment, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
19
|
Abdullah N, Yusof N, Jye LW, Jaafar J, Misdan N, Ismail AF. Removal of lead(II) by nanofiltration-ranged thin film nanocomposite membrane incorporated UiO-66-NH2: Comparative removal performance between hydraulic-driven and osmotic-driven membrane process. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wen X, He C, Hai Y, Liu X, Ma R, Sun J, Yang X, Qi Y, Chen J, Wei H. Fabrication of a hybrid ultrafiltration membrane based on MoS 2 modified with dopamine and polyethyleneimine. RSC Adv 2021; 11:26391-26402. [PMID: 35479471 PMCID: PMC9037359 DOI: 10.1039/d1ra03697a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
The hydrophobicity of ultrafiltration membranes is the main cause of membrane fouling and reduced permeability, so it is necessary to improve the hydrophilicity and anti-fouling performance of ultrafiltration membrane materials. MoS2 nanoparticles that were modified with polydopamine (PDA) and polyethyleneimine (PEI), named MoS2-PDA-PEI, were added to fabricate a polyethersulfone ultrafiltration membrane (PES/MoS2-PDA-PEI) for the first time. The effects of modified MoS2 nanoparticles on membrane performance were clarified. The results indicated that the permeability, rejection, and anti-fouling capability of the hybrid PES/MoS2-PDA-PEI membrane have been improved compared with the pristine PES membrane. When the content of MoS2-PDA-PEI nanoparticles in the membrane is 0.5%, the pure water flux of the hybrid membrane reaches 364.03 L m−2 h−1, and the rejection rate of bovine serum albumin (BSA) and humic acid (HA) is 96.5% and 93.2% respectively. The flux recovery rate of HA reached 97.06%. As expected, the addition of MoS2-PDA-PEI nanoparticles promotes the formation of the porous structure and improves the hydrophilicity of the membrane, thereby improving its antifouling performance. The hydrophobicity of ultrafiltration membranes is the main cause of membrane fouling and reduced permeability, so it is necessary to improve the hydrophilicity and anti-fouling performance of ultrafiltration membrane materials.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xiaofan Liu
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
21
|
Li P, Li YX, Wu YZ, Xu ZL, Zhang HZ, Gao P, Xu SJ. Thin-film nanocomposite NF membrane with GO on macroporous hollow fiber ceramic substrate for efficient heavy metals removal. ENVIRONMENTAL RESEARCH 2021; 197:111040. [PMID: 33771510 DOI: 10.1016/j.envres.2021.111040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The ceramic membrane has been widely used in the wastewater treatment based on the chemical resistance and superior separation performance. A robust and defect-free thin-film nanocomposite (TFN) nanofiltration (NF) membrane on the macroporous hollow fiber ceramic (HFC) substrate was novelly developed for heavy metals removal. Before interfacial polymerization (IP), the aqueous solution of graphene oxide (GO) grafted with ethylenediamine (EDA) was deposited on the HFC substrate by vacuum filtration. Then, a thin polyamide (PA) film was fabricated by EDA and 1,3,5-trimesoyl chloride (TMC), followed by heat treatment. The effects of GO content and EDA concentration on the performance of the NF membrane have been systematically investigated. The results showed that when the GO content was 0.015 mg·mL-1 and the EDA concentration was 0.75 wt.%, the as-prepared eGO3/PA-HFC membrane had a rejection rate of 94.12% for MgCl2 and a pure water flux of 18.03 L·m-2·h-1. Additionally, the removal ability of eGO3/PA-HFC membranes for heavy metal ions was satisfactory (93.33%, 92.73%, 90.45% and 88.35% for Zn2+, Cu2+, Ni2+ and Pb2+, respectively). The study explored further that it was efficient and stable for heavy metal ions removal during 30 h in the simulated tap water and mining wastewater, which indicated that the eGO/PA-HFC membrane has great application potential in wastewater treatment.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Xuan Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hai-Zhen Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Gao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sun-Jie Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
22
|
Ou C, Li S, Wang Z, Qin J, Wang Q, Liao Z, Li J. Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources. MEMBRANES 2021; 11:membranes11050350. [PMID: 34068612 PMCID: PMC8151631 DOI: 10.3390/membranes11050350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
The structure and composition of nanofillers have a significant influence on polyamide nanofiltration (NF) membranes. In this work, an asymmetric organic nanobowl containing a concave cavity was synthesized and incorporated into a polyamide layer to prepare thin film nanocomposite (TFN) membranes via an interfacial polymerization process. Benefiting from the hydrophilicity, hollow cavity and charge property of the compatible organic nanobowls, the separation performance of the developed TFN membrane was significantly improved. The corresponding water fluxes increased to 119.44 ± 5.56, 141.82 ± 3.24 and 130.27 ± 2.05 L/(m2·h) toward Na2SO4, MgCl2 and NaCl solutions, respectively, with higher rejections, compared with the control thin film composite (TFC) and commercial (CM) membranes. Besides this, the modified TFN membrane presented a satisfying purification performance toward tap water, municipal effluent and heavy metal wastewater. More importantly, a better antifouling property of the TFN membrane than TFC and CM membranes was achieved with the assistance of organic nanobowls. These results indicate that the separation performance of the TFN membrane can be elevated by the incorporation of organic nanobowls.
Collapse
Affiliation(s)
- Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Sisi Li
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Zhongyi Wang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Juan Qin
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Qian Wang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Zhipeng Liao
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (Z.L.); (J.L.)
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (Z.L.); (J.L.)
| |
Collapse
|
23
|
Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes (Basel) 2021. [DOI: 10.3390/pr9050752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pressure-driven processes have come a long way since they were introduced. These processes, namely Ultra-Filtration (UF), Nano-Filtration (NF), and Reverse-Osmosis (RO), aim to enhance the efficiency of wastewater treatment, thereby aiming at a cleaner production. Membranes may be polymeric, ceramic, metallic, or organo-mineral, and the filtration techniques differ in pore size from dense to porous membrane. The applied pressure varies according to the method used. These are being utilized in many exciting applications in, for example, the food industry, the pharmaceutical industry, and wastewater treatment. This paper attempts to comprehensively review the principle behind the different pressure-driven membrane technologies and their use in the removal of heavy metals from wastewater. The transport mechanism has been elaborated, which helps in the predictive modeling of the membrane system. Fouling of the membrane is perhaps the only barrier to the emergence of membrane technology and its full acceptance. However, with the use of innovative techniques of fabrication, this can be overcome. This review is concluded with perspective recommendations that can be incorporated by researchers worldwide as a new problem statement for their work.
Collapse
|
24
|
Liu Y, Gao J, Ge Y, Yu S, Liu M, Gao C. A combined interfacial polymerization and in-situ sol-gel strategy to construct composite nanofiltration membrane with improved pore size distribution and anti-protein-fouling property. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Feng Y, Weber M, Maletzko C, Chung TS. Delamination of single layer hollow fiber membranes induced by bi-directional phase separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Zhang G, Xiao Y, Yin Q, Yan J, Zang C, Zhang H. In Situ Synthesis of Silver Nanoparticles on Amino-Grafted Polyacrylonitrile Fiber and Its Antibacterial Activity. NANOSCALE RESEARCH LETTERS 2021; 16:36. [PMID: 33591425 PMCID: PMC7886948 DOI: 10.1186/s11671-021-03496-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/07/2021] [Indexed: 05/28/2023]
Abstract
In this study, amino hyperbranched polymers (HBP)-grafted polyacrylonitrile (PAN) fiber was prepared through an amidation reaction in an autoclave. The prepared PAN-G-HBP fiber can complex Ag+ through amino groups of amino HBP, and in a hot steaming condition, Ag+ can be converted to Ag0 through the reducibility of HBP. PAN-G-HBP and Ag nanoparticles (NPs)-coated fibers were then characterized through FTIR, UV-VIS DRS, FE-SEM, EDS, XPS and antibacterial measurement. FTIR results confirmed HBP was grafted on the surface of PAN fiber. FE-SEM showed that after grafting with HBP, the average diameter of PAN fibers was amplified. EDS, XPS, and UV-VIS DRS method indicated that under hot steaming condition and with the reducibility of HBP, Ag NPs uniform coating on the PAN-G-HBP. Ag NPs-coated fibers exhibits excellent antibacterial property against Escherichia coli and Staphylococcus aureus. Even under 20 times home washing conditions, the antibacterial reduction of Ag NPs-coated PAN fiber can achieved more than 98.94%.
Collapse
Affiliation(s)
- Guangyu Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Yao Xiao
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Qitao Yin
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Jiawei Yan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan
| | - Chuanfeng Zang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Huiyun Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078 People’s Republic of China
| |
Collapse
|
27
|
Gu K, Wang K, Zhou Y, Gao C. Ion-promoting-penetration phenomenon in the polyethyleneimine/trimesic acid nanofiltration membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Yushkin AA, Efimov MN, Malakhov AO, Karpacheva GP, Bondarenko G, Marbelia L, Vankelecom IF, Volkov AV. Creation of highly stable porous polyacrylonitrile membranes using infrared heating. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Zakria HS, Othman MHD, Kamaludin R, Sheikh Abdul Kadir SH, Kurniawan TA, Jilani A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv 2021; 11:6985-7014. [PMID: 35685270 PMCID: PMC9131363 DOI: 10.1039/d0ra10964a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature. A particular focus is given to the preparation of mixed matrix membranes and deposition techniques for photocatalytic degradation in applications for wastewater treatment. Advantages and disadvantages in this application are evaluated. Various operating conditions during the process are presented. About 90 recently published studies (2008–2020) are reviewed. From the literature, it was found that TiO2 is the most favoured photocatalyst that is frequently used in photocatalytic water treatment. Dry–wet co-spinning and sputtering techniques emerged as the promising technique for immobilizing a uniformly distributed photocatalyst within the polymeric membrane, and exhibited excellence pollutant removal. In general, the technical applicability is the key factor in selecting the best photocatalyst immobilizing technique for water treatment. Finally, the scope of various techniques that have been reviewed may provide potential for future photocatalytic study. This article reviews the various techniques of immobilizing a photocatalyst into and onto the polymer membrane for pollutant removal and as a problem solver in handling suspended photocatalyst issues from the previous literature.![]()
Collapse
Affiliation(s)
- Hazirah Syahirah Zakria
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Roziana Kamaludin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensics (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Asim Jilani
- Center of Nanotechnology, King Abdul-Aziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Long Q, Chen J, Wang Z, Zhang Z, Qi G, Liu ZQ. Vein-supported porous membranes with enhanced superhydrophilicity and mechanical strength for oil-water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Chen C, Kang J, Shen J, Zhao S, Wang B, Chen Z, Chen Q. Selective and efficient removal of Hg (II) from aqueous media by a low-cost dendrimer-grafted polyacrylonitrile fiber: Performance and mechanism. CHEMOSPHERE 2021; 262:127836. [PMID: 32805657 DOI: 10.1016/j.chemosphere.2020.127836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 05/27/2023]
Abstract
Polyacrylonitrile fiber was successfully modified with triazine-based dendrimer via grafting method as a promising adsorbent for removal of mercury species from aqueous media. The prepared adsorbent was characterized by elemental analysis, scanning electron microscope, Fourier transform infrared spectroscopy, porous structure analysis and X-ray photoelectron spectroscopy, providing the evidence of successful fabrication. The adsorption conditions were found via varying pH, dosage, coexisting substances, contact time, temperature and concentration. Adsorption performance, described better by the pseudo-second-order kinetics with intraparticle diffusion as rate controlling step and Langmuir isotherm model, indicated a chemisorption process with the maximum Langmuir adsorption amount of 227.64 mg g-1 for mercury ions. Thermodynamically, adsorption of mercury ions was spontaneous and endothermic. Desorption and regeneration experiments demonstrated that it could be reused in five successive adsorption cycles without significant loss of its original performance. Experimental data and density functional theory calculation disclosed the coordination geometries and chelating mechanism between the adsorbent and mercury ions. The proposed study would provide a new prospect for the purification of mercury in aqueous system by functionalizing commercial polyacrylonitrile fiber with dendrimers.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Qian Chen
- School of Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
32
|
Roy S, Majumdar S, Sahoo GC, Bhowmick S, Kundu AK, Mondal P. Removal of As(V), Cr(VI) and Cu(II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122841. [PMID: 32526441 DOI: 10.1016/j.jhazmat.2020.122841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Novel amine functionalized composite membranes were prepared over tubular ceramic substrate using facile dip-coating and cross-flow filtration approach. The two fabricated membranes, P-60S and P-60S-EDTA with polyethyleneimine (PEI) and EDTA-modified PEI as functional layers respectively, were characterized in terms of EDX, FTIR, XPS, FESEM, AFM and contact angle analyses which confirmed their stable physical and chemical structure for use in high pressure application. Clean water permeability and MWCO study revealed the superior permeability and rejection efficiency of the P-60S-EDTA compared to the P-60S membrane. Incorporation of bulky EDTA molecules in the membrane functional layer simultaneously decreased pore size and increased membrane hydrophilicity. The removal of As(V), Cr(VI) and Cu(II) heavy metals by both membranes were found to be highly pH dependent and overall rejection improved in case of P-60S-EDTA membrane [99.82% for Cu(II), 96.75% for As(V) and 97.22% for Cr(VI)]. Interestingly, rejection of As(V) and Cr(VI) was significantly improved in presence of Cu(II) due to volume resistance provided by EDTA-Cu(II) complex towards the passage of other heavy metal ions. Excellent stability of P-60S-EDTA membrane in continuous operation of 36 h in both ideal and practical water environment suggests its promising application in real field heavy metal contaminated waste water treatment.
Collapse
Affiliation(s)
- Sanjukta Roy
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Swachchha Majumdar
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ganesh C Sahoo
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Amit K Kundu
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Priyanka Mondal
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
33
|
Ibrahim S, Mohammadi Ghaleni M, Isloor AM, Bavarian M, Nejati S. Poly(Homopiperazine-Amide) Thin-Film Composite Membrane for Nanofiltration of Heavy Metal Ions. ACS OMEGA 2020; 5:28749-28759. [PMID: 33195928 PMCID: PMC7659160 DOI: 10.1021/acsomega.0c04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The development of membrane-based technologies for the treatment of wastewater streams and resources containing heavy metal ions is in high demand. Among various technologies, nanofiltration (NF) membranes are attractive choices, and the continuous development of novel materials to improve the state-of-the-art NF membranes is highly desired. Here, we report on the synthesis of poly(homopiperazine-amide) thin-film composite (HTFC)-NF membranes, using homopiperazine (HP) as a monomer. The surface charge, hydrophilicity, morphology, cross-linking density, water permeation, solute rejection, and antifouling properties of the fabricated NF membranes were evaluated. The fabricated HTFC NF membranes demonstrated water permeability of 7.0 ± 0.3 L/(m2 h bar) and rejected Na2SO4, MgSO4, and NaCl with rejection values of 97.0 ± 0.6, 97.4 ± 0.5, and 23.3 ± 0.6%, respectively. The membranes exhibit high rejection values of 98.1 ± 0.3 and 96.3 ± 0.4% for Pb2+ and Cd2+ ions, respectively. The fouling experiment with humic acid followed by cross-flow washing of the membranes indicates that a flux recovery ratio (FRR) of 96.9 ± 0.4% can be obtained.
Collapse
Affiliation(s)
- Syed Ibrahim
- Membrane
Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Mahdi Mohammadi Ghaleni
- Department
of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-8286, United States
| | - Arun M. Isloor
- Membrane
Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
- Apahatech
Solutions LLP, Science and
Technology Entrepreneurs Park, National
Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Mona Bavarian
- Department
of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-8286, United States
| | - Siamak Nejati
- Department
of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-8286, United States
| |
Collapse
|
34
|
Chu CH, Wang C, Xiao HF, Wang Q, Yang WJ, Liu N, Ju X, Xie JX, Sun SP. Separation of ions with equivalent and similar molecular weights by nanofiltration: Sodium chloride and sodium acetate as an example. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Mu T, Zhang HZ, Sun JY, Xu ZL. Three-channel capillary nanofiltration membrane with quaternary ammonium incorporated for efficient heavy metals removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Wang ZY, Fu ZJ, Shao DD, Lu MJ, Xia QC, Xiao HF, Su BW, Sun SP. Bridging the miscibility gap to fabricate delamination-free dual-layer nanofiltration membranes via incorporating fluoro substituted aromatic amine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
He B, Peng H, Chen Y, Zhao Q. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118202] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Chen BZ, Ju X, Liu N, Chu CH, Lu JP, Wang C, Sun SP. Pilot-scale fabrication of nanofiltration membranes and spiral-wound modules. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Nanocomposite membranes embedded with dopamine-melanin nanospheres for enhanced interfacial compatibility and nanofiltration performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Gao J, Wang KY, Chung TS. Design of nanofiltration (NF) hollow fiber membranes made from functionalized bore fluids containing polyethyleneimine (PEI) for heavy metal removal. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Jafar Mazumder MA, Raja PH, Isloor AM, Usman M, Chowdhury SH, Ali SA, Inamuddin, Al-Ahmed A. Assessment of sulfonated homo and co-polyimides incorporated polysulfone ultrafiltration blend membranes for effective removal of heavy metals and proteins. Sci Rep 2020; 10:7049. [PMID: 32341422 PMCID: PMC7184734 DOI: 10.1038/s41598-020-63736-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/07/2022] Open
Abstract
Sulfonated homo and co- polyimide (sPI) were synthesized with new compositional ratios, and used as additives (0.5 wt%, 0.75 wt%, and 1.0 wt%) to prepare blend membranes with polysulfone (PSf). Flat sheet membranes for ultrafiltration (UF) were casted using the phase inversion technique. Surface morphology of the prepared UF membranes were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Surface charge of the membranes were determined by zeta potential, and hydrophilicity was studied by contact angle measurement. The contact angle of the membrane decreased with increasing sPI additive indicates increasing the hydrophilicity of the blend membranes. Filtration studies were conducted for rejection of heavy metals (Pb2+ and Cd2+) and proteins (pepsin and BSA). Blend membranes showed better rejection than pure PSf membrane. Among the blend membranes it was observed that with increasing amount of sPIs enhance the membrane properties and finally, PSf-sPI5 membrane with 1 wt% of sPI5 showed the improved permeability (72.1 L m-2 h-1 bar-1), and the best rejection properties were found for both metal ions (≈98% of Pb2+; ≈92% of Cd2+) and proteins (>98% of BSA; > 86% of Pepsin). Over all, this membrane was having better hydrophilicity, porosity and higher number of sites to attach the metal ions. Its performance was even better than several-reported sulfonic acid based UF membranes. All these intriguing properties directed this new UF membrane for its potential application in wastewater treatment.
Collapse
Affiliation(s)
| | - Panchami H Raja
- Membrane Technology Laboratory, Chemistry Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Arun M Isloor
- Membrane Technology Laboratory, Chemistry Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Muhammad Usman
- Center for Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shakhawat H Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Amir Al-Ahmed
- Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
42
|
Cui K, Li P, Zhang R, Cao B. Preparation of pervaporation membranes by interfacial polymerization for acid wastewater purification. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Cai J, Cao XL, Zhao Y, Zhou FY, Cui Z, Wang Y, Sun SP. The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Influence of process parameters on separation performance of strategic elements by polymeric nanofiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Liu Y, Wang X, Gao X, Zheng J, Wang J, Volodin A, Xie YF, Huang X, Van der Bruggen B, Zhu J. High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117717] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Cao XL, Yan YN, Zhou FY, Sun SP. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117476] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
48
|
Xiao HF, Chu CH, Xu WT, Chen BZ, Ju XH, Xing W, Sun SP. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Li P, Ge Q. Membrane Surface Engineering with Bifunctional Zwitterions for Efficient Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31328-31337. [PMID: 31381295 DOI: 10.1021/acsami.9b09773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical modification provides a solution to the membrane fouling problem in oily water purification. However, complicated synthesis processes and harsh reaction conditions are frequently encountered with this approach. Here we developed two bifunctional zwitterionic materials, i.e., n-aminoethyl piperazine propanesulfonate (P-SO3-NH2) and 1,4-bis (3-aminopropyl) piperazine propanesulfonate (P-2SO3-2NH2), by a clean method and grafted them onto membrane surface via a fast single-step reaction. These materials endow the resultant membrane a more hydrophilic and smoother surface, significantly improving the water permeability, fouling resistance and recyclability of membrane in forward osmosis oily water reclamation. The water fluxes produced by the P-2SO3-2NH2 modified membrane are 47% (from 20.0 to 29.3 LMH) and 60% (from 16.0 to 25.6 LMH) higher than those of the unmodified membrane when DI water and an oily emulsion (1500 ppm) as the respective feeds. A higher water flux recovery is also achieved for the P-2SO3-2NH2 modified membrane (94%) than that of the nascent membrane (82%) after a 12-h experiment. These promising findings coupled with a facile and efficient membrane modification approach provide inspiration for both membrane exploration and oily water treatment.
Collapse
Affiliation(s)
- Ping Li
- College of Environment and Resources , Fuzhou University , Fujian 350116 , P. R. China
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , Fujian 350116 , P. R. China
| |
Collapse
|
50
|
Wang Q, Wang Y, Chen BZ, Lu TD, Wu HL, Fan YQ, Xing W, Sun SP. Designing High-Performance Nanofiltration Membranes for High-Salinity Separation of Sulfate and Chloride in the Chlor-Alkali Process. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02217] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|