1
|
Zhu Y, Zhang T, Liu H, Jin C, Feng C, Huang J, Na H, Zhu J. Superhydrophobic microporous membrane based on modified microfibrillated cellulose framework for efficient oil-water separation. Int J Biol Macromol 2024; 279:135163. [PMID: 39218174 DOI: 10.1016/j.ijbiomac.2024.135163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The preparation of stable and efficient cellulose-based oil/water separation membranes is of great significance in solving the problem of industrial oily wastewater. Herein, rod-like hydroxyapatite (HAP) modified microfibrillated celluloses (MFCs) are used to form the fibrous framework to produce a microporous PDMS-MFC-HAP membrane. The membrane shows good superhydrophobicity with a water contact angle of 151.6°. It exhibits the oil-water separation performance for various water-in-oil emulsions. The separation flux of the membrane is up to 3665.3 L·m-2·h-1·bar-1 under 0.5 bar pressure with a separation efficiency of over 99.6 %. The PDMS-MFC-HAP membrane could maintain a high separation efficiency of 98.6 % after 20 cycles. This study provides a simple and effective method to fabricate cellulose-based superhydrophobic membranes, which have a greater potential to achieve oil-water separation for oily wastewater treatment with high efficiency.
Collapse
Affiliation(s)
- Yuxin Zhu
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhang
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenkai Jin
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Chengqi Feng
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Juncheng Huang
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Haining Na
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jin Zhu
- Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
| |
Collapse
|
2
|
Wei M, Zhang Y, Wang Y, Liu X, Li X, Zheng X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. MEMBRANES 2024; 14:35. [PMID: 38392662 PMCID: PMC10890076 DOI: 10.3390/membranes14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.
Collapse
Affiliation(s)
- Mohan Wei
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoping Liu
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
- Yulin Coal Chemical Waste Resource Utilization and Low Carbon Environmental Protection Engineering Technology Research Center, Yulin High-tech Zone Yuheng No. 1 Industrial Sewage Treatment Co., Ltd., Yulin 719000, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
3
|
Li J, Gao J, Fang J, Ling T, Xia M, Cao X, Han Z, Chen Y. Environmental-friendly regenerated lignocellulose functionalized cotton fabric to prepare multi-functional degradable membrane for efficient oil-water separation and solar seawater desalination. Sci Rep 2023; 13:5251. [PMID: 37002350 PMCID: PMC10066188 DOI: 10.1038/s41598-023-32566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Freshwater pollution and shortage have become an imminent problem. Therefore, it is necessary to develop a multi-functional membrane for the production of fresh water. In this work, the regenerated lignocellulose modified cotton fabric was developed as a novel, multi-functional and degradable membrane (LCPT@CF) for efficient oil-water separation and solar steam generation for the first time. The fabrication method has the merits of simple, environmentally friendly and cost effective. The regenerated lignocellulose was adhered on the surface of cotton fabric by tannic acid and polyvinyl alcohol complexes tightly, and the multilayered structures of the LCPT@CF can be formed, which endowed the membranes with underwater superoleophobic property and durability. The underwater superoleophobic property enabled LCPT@CF to purify various kinds of oil-in-water emulsions with a separation efficiency of more than 99.90%. Moreover, benefiting from the excellent photothermal conversion capacity of regenerated lignocellulose, the LCPT@CF achieved high evaporation rate of 1.39 kg m-2 h-1 and favorable evaporation efficiency of 84% under 1 sun illumination, and the LCPT@CF also presented excellent salt-resistance for evaporating seawater for 20 cycles, without salt accumulation. More importantly, the LCPT@CF could be naturally degradable by microorganisms in the natural condition within 3 months, which had outstanding environmental friendliness. These above results demonstrated that the green and efficient LCPT@CF could play great potential in oil-water separation and sewage purification.
Collapse
Affiliation(s)
- Jiangyi Li
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junkai Gao
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiangyu Fang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tian Ling
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mengsheng Xia
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xue Cao
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhi Han
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yan Chen
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
4
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
5
|
Sariipek FB, Gündoğdu Y, Kiliç HŞ. Fabrication of eco‐friendly superhydrophobic and superoleophilic
PHB‐SiO
2
bionanofiber membrane for gravity‐driven oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fatma Bayram Sariipek
- Department of Chemical Engineering, Faculty of Engineering and Nature Konya Technical University Konya Türkiye
| | - Yasemin Gündoğdu
- Department of Computer Technologies, Kadınhanı Faik İçil Vocational High School Selçuk University Konya Türkiye
- Directorate of Laser Induced Proton Therapy Application and Research Center Selçuk University Konya Türkiye
| | - Hamdi Şükür Kiliç
- Directorate of Laser Induced Proton Therapy Application and Research Center Selçuk University Konya Türkiye
- Department of Physics, Faculty of Science Selçuk University Konya Türkiye
| |
Collapse
|
6
|
Activated carbon fibers with different hydrophilicity/hydrophobicity modified by pDA-SiO2 coating for gravity oil–water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation. Molecules 2022; 27:molecules27217470. [DOI: 10.3390/molecules27217470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The frequent occurrence of crude oil spills and the indiscriminate discharge of oily wastewater have caused serious environmental pollution. The existing separation methods have some defects and are not suitable for complex oil–water emulsions. Therefore, the efficient separation of complex oil–water emulsions has been of great interest to researchers. Asymmetric wettable Janus materials, which can efficiently separate complex oil–water emulsions, have attracted widespread attention. This comprehensive review systematically summarizes the research progress of asymmetric wettable Janus materials for oil–water separation in the last decade, and introduces, in detail, the preparation methods of them. Specifically, the latest research results of two-dimensional Janus materials, three-dimensional Janus materials, smart responsive Janus materials, and environmentally friendly Janus materials for oil–water separation are elaborated. Finally, ongoing challenges and outlook for the future research of asymmetric wettable Janus materials are presented.
Collapse
|
8
|
Xiong S, Qian X, Zhong Z, Wang Y. Atomic layer deposition for membrane modification, functionalization and preparation: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Cao M, Xiao F, Yang Z, Chen Y, Lin L. Purification of oil-containing emulsified wastewater via PAN nanofiber membrane loading PVP-UiO-66-NH2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
A greener approach to design Janus PVDF membrane with polyphenols using one-pot fabrication for emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation. J Colloid Interface Sci 2022; 620:1-13. [DOI: 10.1016/j.jcis.2022.03.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 01/19/2023]
|
12
|
Hu J, Gui L, Zhu M, Liu K, Chen Y, Wang X, Lin J. Smart Janus membrane for on-demand separation of oil, bacteria, dye, and metal ions from complex wastewater. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Shi Y, Zheng Q, Ding L, Yang F, Jin W, Tang CY, Dong Y. Electro-Enhanced Separation of Microsized Oil-in-Water Emulsions via Metallic Membranes: Performance and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4518-4530. [PMID: 35258928 DOI: 10.1021/acs.est.2c00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventional separation membranes suffer from evitable fouling and flux decrease for water treatment applications. Herein, a novel protocol of electro-enhanced membrane separation is proposed for the efficient treatment of microsized emulsions (∼1 μm) by rationally designing robust electroresponsive copper metallic membranes, which could mitigate oil fouling and coenhance permeance (from ∼1026 to ∼2516 L·m-2·h-1·bar-1) and rejection (from ∼87 to ∼98%). High-flux Cu membranes exhibit superior ductility and electrical conductivity, enabling promising electroactivity. Separation performance and the fouling mechanism were studied under different electrical potentials and ionic strengths. Application of negative polarization into a large-pore (∼2.1 μm) Cu membrane is favorable to not only almost completely reject smaller-sized oil droplets (∼1 μm) but also achieve antifouling and anticorrosion functions. Moreover, surfactants around oil droplets might be redistributed due to electrostatic repulsion, which effectively enhances the steric hindrance effect between neighboring oil droplets, mitigating oil coalescence and consequently membrane fouling. Furthermore, due to the screening effect of surfactants, the presence of low-concentration salts increases the adsorption of surfactants at the oil-water interface, thus preventing oil coalescence via decreasing oil-water interfacial tension. However, under high ionic strengths, the fouling mechanism converts from cake filtration to a complete blocking model due to the reduced electrostatic repulsion between the Cu membrane and oil droplets. This work would provide mechanistic insights into electro-enhanced antifouling for not only oil emulsion separation but also more water treatment applications using rationally designed novel electroresponsive membranes.
Collapse
Affiliation(s)
- Yongxuan Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qifeng Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liujie Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenbiao Jin
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Sosnov EA, Malkov AA, Malygin AA. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221090020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ultrahigh throughput and efficient separation of oil/water mixtures using superhydrophilic multi-scale CuBTC-coated meshes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Cui J, Xie A, Yan Z, Yan Y. Fabrication of crosslinking modified PVDF/GO membrane with acid, alkali and salt resistance for efficient oil-water emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118528] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Robust and switchable superwetting sponge-like membrane: Towards on-demand emulsion separation and aqueous pollutant degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Zhou Y, Zhang J, Wang Z, He F, Peng S, Li Y. A modified TA-APTES coating: Endowing porous membranes with uniform, durable superhydrophilicity and outstanding anti-crude oil-adhesion property via one-step process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Zulfiqar U, Thomas AG, Matthews A, Lewis DJ. Surface Engineering of Ceramic Nanomaterials for Separation of Oil/Water Mixtures. Front Chem 2020; 8:578. [PMID: 33330349 PMCID: PMC7711160 DOI: 10.3389/fchem.2020.00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Oil/water mixtures are a potentially major source of environmental pollution if efficient separation technology is not employed during processing. A large volume of oil/water mixtures is produced via many manufacturing operations in food, petrochemical, mining, and metal industries and can be exposed to water sources on a regular basis. To date, several techniques are used in practice to deal with industrial oil/water mixtures and oil spills such as in situ burning of oil, bioremediation, and solidifiers, which change the physical shape of oil as a result of chemical interaction. Physical separation of oil/water mixtures is in industrial practice; however, the existing technologies to do so often require either dissipation of large amounts of energy (such as in cyclones and hydrocyclones) or large residence times or inventories of fluids (such as in decanters). Recently, materials with selective wettability have gained attention for application in separation of oil/water mixtures and surfactant stabilized emulsions. For example, a superhydrophobic material is selectively wettable toward oil while having a poor affinity for the aqueous phase; therefore, a superhydrophobic porous material can easily adsorb the oil while completely rejecting the water from an oil/water mixture, thus physically separating the two components. The ease of separation, low cost, and low-energy requirements are some of the other advantages offered by these materials over existing practices of oil/water separation. The present review aims to focus on the surface engineering aspects to achieve selectively wettability in materials and its their relationship with the separation of oil/water mixtures with particular focus on emulsions, on factors contributing to their stability, and on how wettability can be helpful in their separation. Finally, the challenges in application of superwettable materials will be highlighted, and potential solutions to improve the application of these materials will be put forward.
Collapse
Affiliation(s)
- Usama Zulfiqar
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| | - Andrew G Thomas
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| | - Allan Matthews
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| | - David J Lewis
- Department of Materials, University of Manchester, Manchester, United Kingdom.,International Centre for Advanced Materials (ICAM), University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Kang H, Sun Y, Li Y, Qin W, Wu X. Mechanically Robust Fish-Scale Microstructured TiO 2-Coated Stainless Steel Mesh by Atomic Layer Deposition for Oil–Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongjun Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Ying Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Wei Qin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Xiaohong Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
22
|
Wang J, Sun Y, Bi W, Jiang Z, Zhang M, Pang J. High-strength corrosion resistant membranes for the separation of oil/water mixtures and immiscible oil mixtures based on PEEK. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Quartz Sand Filter Media with Special Wettability for Continuous and Efficient Oil/Water Separation and Dye Adsorption. Processes (Basel) 2020. [DOI: 10.3390/pr8091083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
For continuous and efficient oil/water separation and adsorption of dyes, coconut shell powder was grafted onto the surface of quartz sand by dip-coating method to make coconut shell powder-covered quartz sand filter media (CSQS) with superhydrophilic and underwater superoleophobic properties and superoleophilic and underoil highly hydrophobic properties. The contact angles of the underwater oil and underoil water with CSQS were more than 151.2° and 134.2°, respectively. A continuous oil/water separation device was designed. The separation device filled with CSQS can separate oil/water mixture (whether heavy or light oil) into water and oil at the same time with a separation efficiency of above 99.92%. The filter layer can be recovered through reverse extrusion even after lyophobic liquid penetrated the filter layer; hence, the separation efficiency of the filter layer was still above 99.99% for diesel and water mixture. Simultaneously, CSQS can effectively adsorb methylene blue with the highest removal rate as 98.94%. CSQS can maintain stable wettability under harsh environment conditions. This paper provides a new idea on continuous and efficient oil/water separation and simultaneous dye adsorption.
Collapse
|
24
|
Zhuang GL, Wu SY, Lo YC, Chen YC, Tung KL, Tseng HH. Gluconacetobacter xylinus synthesized biocellulose nanofiber membranes with superhydrophilic and superoleophobic underwater properties for the high-efficiency separation of oil/water emulsions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118091] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhang YR, Chen JT, Hao B, Wang R, Ma PC. Preparation of cellulose-coated cotton fabric and its application for the separation of emulsified oil in water. Carbohydr Polym 2020; 240:116318. [PMID: 32475581 DOI: 10.1016/j.carbpol.2020.116318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/23/2023]
Abstract
Cellulose is a natural material with dissolution-regeneration property and numerous hydrogen bonds in the molecule. By utilizing these properties, this paper reported the development of a multi-functional fabric consisting of cellulose and commercial cotton fabric. The morphology, mechanical and thermal properties along with the oil-water separation performance of the developed material were studied. The results showed that the cellulose dissolved in NaOH/urea solution was regenerated in a salt solution, and attached tightly onto the cotton fabric, forming a sandwich structure for the material. Such modification significantly enhanced the strength, thermal stability and hydrophilic performance of the fabrics. Interestingly, the prepared material exhibited a unique underwater oleophobic performance, and had the capability to separate highly emulsified oil-water mixtures. The relatively low cost for the material preparation, enhanced mechanical property and high separation performance distinguished the developed material a suitable candidate for the separation of emulsified oil from water in practical applications.
Collapse
Affiliation(s)
- Yu-Rong Zhang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Teng Chen
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Hao
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Wang
- CAS-Realnm Separation Technology Company, Wuxi, 214001, China
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Yu L, Kanezashi M, Nagasawa H, Tsuru T. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117477] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Soesanto JF, Hwang KJ, Cheng CW, Tsai HY, Huang A, Chen CH, Cheng TW, Tung KL. Fenton oxidation-based cleaning technology for powdered activated carbon-precoated dynamic membranes used in microfiltration seawater pretreatment systems. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Li ZK, Liu Y, Li L, Wei Y, Caro J, Wang H. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117361] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|